Conteúdo principal
3ª série matemática Paraná
Curso: 3ª série matemática Paraná > Unidade 1
Lição 3: Aula 9 - Variáveis e tabela de frequência e medidas de tendência centralIntrodução à estatística: média, mediana e moda
A média de um conjunto de dados é encontrada somando-se todos os números do conjunto de dados e então dividindo o resultado pelo número de valores do conjunto. A mediana é o valor do meio quando o conjunto de dados está ordenado do menor para o maior. A moda é o número que aparece mais vezes em um conjunto de dados. Versão original criada por Sal Khan.
Quer participar da conversa?
- você foi o dublador do Goku?haha gostei!(27 votos)
- Gente como o Kam academy existe a 9 anos?🤨🤨🤨🤨🤨(8 votos)
- Eu ainda não entendi como calcular a mediana. Será que alguém pode me explicar?(8 votos)
- A mediana é, literalmente o número do meio, sendo que estes precisam estar em ordem crescente. Por exemplo:
A mediana entre 3,1,6,2,5,3,6 é:
Primeiro passo: Coloca os número em sequência.
P= 1,2,3,3,5,6,6
Segundo Passo: Observe que nessa sequência existem 7 elementos, logo o número que está no meio é o 4º número (uma vez que tem 3 números atrás e na frente dele).
Basta agora procurar o 4º número na sequência. No caso, é o número 3. Pronto, isso é a mediana.(31 votos)
- O que tá acontecendo, esse estado só está piorando meu psicológico 🥺(21 votos)
- pq o goku ta dando aula de matemática :((13 votos)
- a voz do cara parece a do goku(8 votos)
- como reolver a media ponderada?(2 votos)
- voce preciza de uma regua tamanho GG e colocar poder nela(2 votos)
- Estou assistindo o video todo mas não estou ganhando pontos, porquê?(4 votos)
- deve ser um problema na página ou no servidor tente reiniciando a pagina ou relate esse problema(3 votos)
- Vim do futuro são 2067 e o Palmeiras não ganhou o Mundial ainda.(4 votos)
- nss gente que horrivel esse app da ate vontade de morrer.(4 votos)
- Eu ainda não entendi como calcular a mediana. Será que alguém pode me explicar?(1 voto)
- a mediana é o número do meio da lista na ordem crescente
[1 2 (3) 4 5]
[1 2 (3 4) 5 6] (entre 3 e 4 fica 3,5)(6 votos)
Transcrição de vídeo
RKA17JV Vamos começar uma jornada
ao mundo da estatística! Estatística é uma forma de
entender e trabalhar com dados. Estatística tem tudo a ver com dados. No começo dessa jornada pelo mundo da estatística, a gente vai lidar muito com a estatística descritiva. Se a gente tem um monte de dados e quer revelar algo sobre esses dados sem ter que divulgar todos, então, dá para descrevê-los com
um conjunto menor de números, correto? Vamos nos concentrar nisso. Quando tiver uma noção melhor
de estatística descritiva vamos começar a fazer inferências sobre os dados,
e daí, tirar conclusões e fazer julgamentos. Aí a gente começa a lidar com a estatística
inferencial e a fazer inferências. Agora, como vamos descrever os dados? Digamos que tem um conjunto de números, que dá pra falar que são dados. Queremos medir a altura das plantas do nosso jardim. Digamos que tem 6 plantas,
e suas alturas são 4 polegadas, 3, 1, 6 polegadas, outra tem 1 polegada, e a última, 7 polegadas. Alguém que não viu as plantas perguntou:
"Qual é a altura das suas plantas?" Ele só quer um número, quer ouvir um número que represente todas essas alturas diferentes. Então, como fazemos isso? Temos que procurar um número típico. Talvez eu queira um número que represente a média. Talvez eu queira o número mais frequente, talvez eu queira o número que represente
o centro de todos esses números. Se pensou uma dessas coisas, pensou igual às
pessoas que criaram a estatística descritiva. Elas se perguntam:
"Como fazer isso?" E vamos começar pensando na ideia de média. Na terminologia usual, média
tem um significado particular. Quando muita gente fala em média, se refere à média aritmética,
que veremos em instantes. Mas, em estatística, média
significa algo mais geral, como "me dê um número típico",
ou um "número médio". Um ou outro, típico ou médio e é uma tentativa de achar
uma medida de tendência central. De novo, tem um monte de números que estamos tentando representar com um número, vamos chamar de média, que seja típico, ou o meio,
ou o centro, desses números. Como veremos, tem muitos tipos de médias. O primeiro é um que já deve conhecer, é a média de uma prova, ou a altura
média, essa é a média aritmética. Deixe-me escrever, vou escrever em amarelo. Média aritmética. A palavra "aritmética" pode ser tanto um
substantivo quanto um adjetivo. Média aritmética. E é simplesmente a soma de todos os números dividida por, e essa é uma definição
inventada que a gente julga ser útil, é simplesmente a soma de todos esses números dividida pela quantidade de números que temos. Qual é a média aritmética desse conjunto de dados? Vamos calcular. Vai ser 4 + 3 + 1 + 6 + 1 + 7, sobre a quantidade de números que nós temos. Temos 6 números, vamos dividir por 6. Teremos 4 mais 3, dá 7, mais 1, dá 8,
mais 6, dá 14, mais 1, dá 15, mais 7,
15 mais 7, dá 22. Vou confirmar. 7, 8, 14, 15, 22,
tudo isso sobre 6. Podemos escrever como número misto. Cabem três 6 em 22
e sobram 4. Dá 3 4/6, que é a mesma coisa que 3 2/3. Podemos escrever como decimal, 3,6666...
repetindo o número 6, pois é uma dízima periódica. Isso também é 3,6666. Todas essas formas são válidas, mas esse número é uma representação,
é uma tentativa de chegar a uma tendência central. Estas são criações humanas, ninguém achou um documento religioso que dizia que
é assim que a média aritmética deve ser definida. Não é um cálculo tão puro quanto
encontrar a circunferência do círculo. Estudamos o universo,
e o cálculo surgiu desse estudo. É uma definição inventada que achamos útil. Existem outras formas de calcular a média
ou encontrar um valor típico ou mediano. A outra forma, muito típica, é a mediana. As cores estão se acabando aqui. Vou escrever mediana de rosa. Aqui está a mediana. A mediana busca o número do meio. Se você ordenar os números do
conjunto e encontrar o do meio, essa vai ser a mediana. Então, qual será a mediana deste conjunto de números? Vamos tentar descobrir. Vamos ordená-los:
tem 1, outro 1, depois 3, depois temos 4, 6 e 7. Apenas reordenei os números. Qual é o número do meio? Olhe para cá, como temos um
número par de números, são seis, não há só um número do meio,
temos dois números médios aqui. Temos dois números médios bem aqui, o 3 e o 4. E quando temos dois números médios, calculamos
a metade do caminho entre os dois números. Vamos calcular a média aritmética desses
dois números para achar a mediana. Então, a mediana vai ser a média entre 3 e 4,
que vai ser 3,5, a mediana nesse caso é 3,5. Se tiver um número par de números, os dois
do meio ou a média aritmética dos dois, ou ainda a metade do caminho entre os dois. Com um conjunto ímpar de números,
é mais fácil calcular. Vamos ver um exemplo. Digamos que nosso conjunto,
e eu já vou ordená-lo, que nosso conjunto fosse
0, 7, 50, 10.000 e, sei lá, 1.000.000 Um milhão. Esse é o nosso conjunto de dados bem maluco,
mas nessa situação, qual é a mediana? Aqui temos cinco números, um conjunto ímpar,
então é mais fácil achar o do meio. O do meio é o número que é maior que dois números e menor que dois números, ele fica exatamente no meio. Nesse caso, nossa mediana é 50. A terceira medida de tendência central
e provavelmente a que menos usamos é a moda. As pessoas se esquecem dela, parece algo muito complexo, mas veremos que é uma ideia bem simples. De certa forma, é a ideia mais básica. A moda é o número mais comum
em um conjunto de dados, se ele existir. Se não há números repetidos, se não tem
o mais comum, não temos moda. Mas dada essa definição de moda, qual é o número mais comum em nosso conjunto original, nesse aqui? Só temos um 4, só temos um 3, mas temos dois 1, temos dois 1, temos um 7 e temos um 6 então, o número que
aparece mais vezes aqui é o nosso 1. A moda, o número mais típico,
número mais comum aqui é o 1. Estas são formas diferentes de chegar
a uma tendência média ou central, mas calculamos de formas bem diferentes. E conforme você estudar estatística, vai ver que elas são usadas para coisas diferentes,
isso é usado com muita frequência. A mediana funciona bem se tem um número maluco que poderia distorcer a média aritmética, e a moda também pode ser usada em situações assim, principalmente se tem um número
que aparece com muito mais frequência. Bom, eu vou parar por aqui. Nos próximos vídeos a gente deve
explorar ainda mais a estatística.