If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal

Transcrição de vídeo

RKA - O volume de uma caixa é de 405 unidades cúbicas de uma unidade geral. Poderia ser pés cúbicos, metros cúbicos, centímetros cúbicos, ou milhas cúbicas. Quem sabe! Querem manter em unidades que é o mais genérico possível. O comprimento é "x" unidades, a largura é "x + 4" unidades, e na altura é de 9 unidades. Vou desenhar a caixa para visualizar melhor. Eles nos dizem que o comprimento é "x". Dá para chamar isso de comprimento. A largura "x + 4". E a altura é 9. Em unidades, quais são as dimensões da caixa? A gente também sabe que o volume é 405. 405. Vou fazer assim. Se quiser calcular o volume, como a gente faria? Seria a largura, "x + 4", vezes o comprimento, vezes "x", vezes 9. Este é literalmente o volume da caixa. Também sabemos que o volume da caixa é de 405 unidades cúbicas. Que é igual a 405. Agora vamos encontrar o valor de "x". Se distribuir "9x × (x + 4)". Vou reescrever. Isto é a mesma coisa que "9x × (x + 4) = 405". "9x × x = 9x²". "9x × 4 = 36x". É igual a 405. A gente quer que nossa expressão de segundo grau seja igual a 0. Vamos subtrair 405 dos dois lados da equação. Quando fazemos isso, o lado direito é igual a 0, e o lado esquerdo é "9x² + 36x - 405". Esses números têm algum fator comum? Bom, 405. 4 + 0 + 5 = 9, então ele é divisível por 9. Todos eles são divisíveis por 9. Vamos descobrir quanto dá 405 ÷ 9. O 9 cabe 4 vezes em 40. 4 × 9 = 36. Subtraímos e ficamos com 45. 9 × 5 = 45. Subtraindo, ficamos com 0. Portanto, 45 vezes. Se a gente fatorar o 9, ficamos com "9 × x²". Aliás não precisamos fatorar o 9, dá para dividir os dois lados da equação por 9. Se dividir todos os termos por 9, a equação não muda. Fazemos o mesmo dos dois lados da equação que, como já aprendemos, é perfeitamente válido. Aqui fica com "x²". Se só houvesse essa expressão e tivesse que fatorar, teria que fatorar o 9. Mas como é uma equação igual a zero, basta dividir tudo por 9. É mais fácil. Ficamos com "x² + 4x - 45 = 0". Agora dá para tentar fatorar aqui e isso sim se encaixa no padrão. Não tem um coeficiente 1 aqui, e nem precisamos agrupar. Basta pensar, quais são os dois números cujo produto dá -45 e cuja soma dá 4? A diferença entre eles é 4. 1 é positivo e o outro é negativo. A diferença entre eles é 4. Na soma o que importa é a diferença porque um deles é negativo. Vamos pensar. Se pegar o 9 e o -5, acho que vai funcionar. 9 + (- 5) = 4, e o produto dá -45. Tem (x + 9) × (x - 5) = 0. Fatoramos. E já vimos isso. Quando tem dois números e seu produto é igual a zero, pelo menos um dos números tem que ser igual a zero. Isso significa que "x + 9 = 0". Vou abrir um espaço aqui. "x + 9 = 0" ou "x - 5 = 0". Se subtrair 9 dessa equação aqui, ficamos com "x = -9". Ou se somar 5 aos dois lados dessa equação, ficamos com "x = 5". Esses dois são possíveis valores de "x". A caixa, se "x = -9". "x = -9" não funciona porque se colocaram um -9, vai ficar com uma caixa cuja largura é -5, o comprimento é -9 e altura é 9. E, na vida real não tem medidas negativas assim. Esse comprimento e largura não valem. "x = -9" não é apropriado para esse problema porque precisamos ter dimensões positivas. Vamos ver o que acontece com o "x = 5". Se "x = 5", "x + 4 = 9". E essa dimensão aqui vai ser 5. E isso parece ser bem razoável. Vamos verificar se assim a gente chega ao volume de 405. 9 × 5 = 45, vezes 9 dá 405. A gente viu que 45 × 9 = 405. Então, terminamos. Fui!