If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal

Revisão da demonstração da fórmula de Bhaskara

Uma demonstração em texto (não em vídeo) da fórmula de Bhaskara
A fórmula de Bhaskara determina que
x, equals, start fraction, minus, start color #e07d10, b, end color #e07d10, plus minus, square root of, start color #e07d10, b, end color #e07d10, squared, minus, 4, start color #7854ab, a, end color #7854ab, start color #e84d39, c, end color #e84d39, end square root, divided by, 2, start color #7854ab, a, end color #7854ab, end fraction
para toda equação do segundo grau como:
start color #7854ab, a, end color #7854ab, x, squared, plus, start color #e07d10, b, end color #e07d10, x, plus, start color #e84d39, c, end color #e84d39, equals, 0
Se você nunca viu esta fórmula demonstrada antes, talvez você queira assistir a uma demonstração em vídeo, mas se estiver apenas revisando ou se preferir uma demonstração em texto, aqui está:

A demonstração

Vamos começar com a equação na forma geral da reta e aplicar nosso conhecimento em álgebra para encontrar o valor de x. Na parte mais importante da demonstração está uma técnica chamada start color #11accd, start text, C, o, m, p, l, e, t, a, r, space, q, u, a, d, r, a, d, o, s, end text, end color #11accd. Caso você não conheça essa técnica, você pode se familiarizar com ela assistindo a esse vídeo.

Parte 1: Completando quadrados

ax2+bx+c=0(1)ax2+bx=c(2)x2+bax=ca(3)x2+bax+b24a2=b24a2ca(4)(x+b2a)2=b24a2ca(5)\begin{aligned} \purpleD{a}x^2 + \goldD{b}x + \redD{c} &= 0&(1)\\\\ ax^2+bx&=-c&(2)\\\\ x^2+\dfrac{b}{a}x&=-\dfrac{c}{a}&(3)\\\\ \blueD{x^2+\dfrac{b}{a}x+\dfrac{b^2}{4a^2}}&\blueD{=\dfrac{b^2}{4a^2}-\dfrac{c}{a}}&(4)\\\\ \blueD{\left (x+\dfrac{b}{2a}\right )^2}&\blueD{=\dfrac{b^2}{4a^2}-\dfrac{c}{a}}&(5) \end{aligned}

Parte 2: Álgebra! Álgebra! Álgebra!

Lembre-se, nosso objetivo é encontrar o valor de x.
(x+b2a)2=b24a2ca(5)(x+b2a)2=b24a24ac4a2(6)(x+b2a)2=b24ac4a2(7)x+b2a=±b24ac4a2(8)x+b2a=±b24ac2a(9)x=b2a±b24ac2a(10)x=b±b24ac2a(11)\begin{aligned} \left (x+\dfrac{b}{2a}\right )^2&=\dfrac{b^2}{4a^2}-\dfrac{c}{a}&(5) \\\\ \left (x+\dfrac{b}{2a}\right )^2&=\dfrac{b^2}{4a^2}-\dfrac{4ac}{4a^2} &(6)\\\\ \left (x+\dfrac{b}{2a}\right )^2&=\dfrac{b^2-4ac}{4a^2}&(7)\\\\ x+\dfrac{b}{2a}&=\pm \dfrac{\sqrt{b^2-4ac}}{\sqrt{4a^2}}&(8)\\\\ x+\dfrac{b}{2a}&=\pm \dfrac{\sqrt{b^2-4ac}}{2a}&(9)\\\\ x&=-\dfrac{b}{2a}\pm \dfrac{\sqrt{b^2-4ac}}{2a}&(10)\\\\ x&=\dfrac{-\goldD{b}\pm\sqrt{\goldD{b}^2-4\purpleD{a}\redD{c}}}{2\purpleD{a}}&(11) \end{aligned}
E é isso!

Quer participar da conversa?

Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.