If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal
Tempo atual:0:00Duração total:4:11

Transcrição de vídeo

RKA1MP - Dando um retângulo com cumprimento a² + 6a - 27 e largura a² - 9, escreva a razão entre a largura do retângulo e o seu comprimento como uma expressão racional simplificada. A gente quer a razão entre a largura e o comprimento do retângulo. E nos deram as expressões para cada um deles. A expressão para a largura do retângulo é a² - 9, em rosa. Eu vou fazer a largura que é a a² - 9. E queremos a razão entre ela e o comprimento, a razão entre a largura do retângulo e seu comprimento. O comprimento é dado bem aqui, é a² + 6a - 27. Querem que a gente simplifique. A melhor maneira de simplificar, se estamos lidando com expressões no numerador ou denominador ou apenas números, é fazer a fatoração e ver se tem algum fator em comum. E, se tiver, devemos ser capazes de anular esses fatores. Assim, fazemos a fatoração dessa expressão de cima que era a expressão da largura. Isso é a diferença de quadrados que é da forma a² - b², onde "b²" é 9. Então, vai ser igual a "a" mais raiz quadrada de 9, vezes "a" menos raiz quadrada de 9. Portanto, é "a" mais 3 vezes "a" menos 3. Acabei de reconhecer essa forma apenas pelo padrão. Se encontrar algo como a² - b², deve fazer "a" mais "b", vezes "a" menos "b", pode verificar. Multiplique a² - b². É "a" mais, a largura pode ser fatorada em "a" mais 3 vezes "a" menos 3, vamos ver se dá para fazer alguma coisa com o denominador. Aqui, se queremos fatorar, é preciso pensar em dois números e, quando somamos os dois, tenho 6 positivo, quando pego o produto, tenho -27. Se tenho 9 positivo e -3 devem funcionar. Então, se poderia ser fatorado como "a" mais 9 e "a" menos 3. 9a. 9 vezes "a" é 9a, "a" vezes -3 é -3a. Quando você soma aqueles dois termos do meio, vai ter 6a. Depois, 9 vezes -3 é -27. Claro, "a" vezes "a" é "a²". Fatorei as duas expressões. Vamos ver se podemos simplificar antes de fazer, porque quando simplificamos perdemos informação. Vamos apenas lembrar quais são os "a" permitidos para não perder essa informação. Tem alguns valores que vão tornar essa expressão indefinida. Qualquer valor que torne o denominador zero, vai fazer ser indefinido . "a" não pode ser igual a -9. 9 positivo ou 3, porque se fosse -9 ou 3, então, o denominador seria zero. Essa expressão seria indefinida. Portanto, tem que lembrar. Isso é parte da expressão, não queremos mudar esse domínio, não queremos permitir que comece com coisas que não eram permitidas. Daí, vamos apenas relembrar. Dito isso, agora, que fizemos essa ressalva, dá para simplificar mais. Olha tem um "a - 3" no numerador e tem um "a - 3" no denominador. Então, assumimos que "a" não vai ser igual a 3. Não é como se fizesse divisão. Tem um zero sobre um zero, "a" não vai ser igual a 3. Qualquer outro número vai ser um número real, você divide o numerador e o denominador pelo mesmo valor e nos resta a + 3 sobre a + 9. E a limitação aqui é que não queremos deixar de lado as restrições do nosso domínio. "a" não pode ser -9 ou 3. É importante que a gente escreva isto aqui porque aqui perdemos a informação que "a" não poderia ser igual a 3. Mas, para que realmente seja o mesmo que isso aqui, que isso aqui, quando "a" era igual a 3, não estava definido. Para que seja a mesma coisa, a gente tem que restringir o domínio bem aqui. "a" não pode ser igual a 3. Espero que tenha achado isso útil.