Se você está vendo esta mensagem, significa que estamos tendo problemas para carregar recursos externos em nosso website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Conteúdo principal

Equações com uma expressão racional (avançado)

Neste vídeo, resolvemos a equação a seguir primeiramente simplificando a expressão racional: x^2-(x^2-4)/(x-2)=4. Criado por Sal Khan e Instituto de Tecnologia e Educação de Monterey.

Quer participar da conversa?

Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.

Transcrição de vídeo

RKA1MP Resolva a equação: x² menos x² - 4 sobre x - 2 igual a 4. Nos dizem que "x" não será ou não pode ser 2 porque, se fosse 2, essa expressão seria indefinida, seria o mesmo que dividir por zero. Vamos determinar "x". Vamos ver qual o valor de "x" satisfaz essa equação. Você pode querer expressar com um denominador comum de x - 2, depois somar essas duas expressões. Mas, o que me chama a atenção desde o começo é que tem x²- 4 no numerador que é uma diferença de quadrados. Para cancelar, escreva como x + 2 vezes x -2, poderemos cancelar esse x - 2. Vamos fazer isso. Se rescrever, vai ser equivalente a x² -, ao invés de escrever x² - 4, a gente sabe que é uma diferença de quadrados, é x + 2 vezes x - 2, tudo sobre x - 2 e é igual a 4. Durante o tempo todo, estamos considerando que "x" não será igual a 2 e, como "x" não é igual a 2, x - 2 dividido por x - 2 vai ser definido. E será 1, esses dois se cancelam. E tem x² - x + 2 é igual a 4. Dá para distribuir o sinal negativo, e vou trocar de cores arbitrariamente. Podemos distribuir o sinal negativo, então tem x² - x - 2 igual a 4. E o que quero fazer é colocar isso no formato Ax² + Bx + C igual a zero. Assim, nos permite usar fatoração ou resolver por Bháskara, ou completar o quadrado, qualquer uma das formas que conhecemos para resolver uma equação quadrática. Vamos obter um zero do lado direito. A melhor forma de fazer isso é subtrair 4 dos dois lados da equação. Subtraímos 4 e tem x² - x, 2 negativo menos 4 é -6, e 4 - 4 é 0. É isso que estamos demonstrando. Tem x² - x - 6 é igual a zero. Vou escrever aqui em cima. x² - x - 6 é igual a zero. Isso pode ser um fator, só precisamos pensar em dois números que ao multiplicar nos dão -6. Eles terão sinais diferentes. Quando eu somo vou ter um negativo. Parece que três negativo e dois positivo. Se fizer x - 3 vezes x + 2, é um processo de tentativa e erro, mas o número 6 não tem tantos fatores e 3 e 2 estão somente a uma unidade de distância, eles têm dois sinais diferentes, então é assim que você pode pensar para chegar a essa conclusão. -3 vezes 2 é -6, -3 mais 2 é -1. Então, isso é igual a zero. Tem duas possibilidades de chegar a zero: ou x - 3 é igual a zero; ou x + 2 igual a zero. E, se pegar x - 3 igual a zero, se somar 3 aos dois lados nessa equação, a gente tem "x" é igual a 3 ou, se subtrair 2 dos dois lados dessa equação, tem "x" igual a -2. Esses dois valores são soluções e vamos aplicar nessa equação para ter certeza de que eles funcionam porque são soluções para, basicamente, a situação onde tiramos o x - 2. Talvez, tenha tido alguma contra-indicação. Então, vamos verificar que as duas realmente funcionam na equação original. Primeiro, vamos tentar "x" igual a 3. Então, você tem 3² - 4, sobre 3 - 2. Isso é igual a 9, - 3² dá 9, menos 4, que dá a 5 sobre 1. Tem 9 menos 5 que é igual a 4 que é, exatamente, onde queríamos chegar. E vamos tentar com o - 2. -2² dá 4. -2² que é 4, menos 4. Tudo sobre -2 menos 2, então é sobre -4. 4 - 4 dá zero, então tudo isso vai virar zero. Tudo isso vai ser igual a 4. Essas duas soluções funcionam. Faz sentido porque, quando cancelamos, não mudamos nada com relação às equações, só se você tivesse a situação onde "x" fosse igual a 2. Esta é a única coisa que você está realmente mudando, por isso que faz sentido que as duas situações funcionem.