If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal
Tempo atual:0:00Duração total:4:19

Problema de multiplicação de polinômios

Transcrição de vídeo

RKA - Calcule o volume de um tanque cuja área da base é 3x ao quadrado mais 30x mais cinco metros ao quadrado e cuja altura é 8x menos 5. Vou desenhar um tanque aqui. Talvez seja um cilindro. Então, vou fazer um tanque cilíndrico assim. Tem um cilindro que se fosse transparente, a gente veria a parte de trás. Esses dois são iguais e estas linhas são retas. E o volume, vou identificar primeiro a área da base que é igual à área do topo ou da base. A área disto é 3x² + 30x + 5. E a altura é 8x - 5. A altura desse tanque é 8x - 5 8x - 5. E, se quer achar o volume de um objeto tridimensional como este, basta multiplicar a área da base pela altura. Então, o volume vai ser a área da base, que é 3x² + 30x + 5 vezes a altura 8x - 5. Multiplicar algo assim pode parecer muito complicado, mas basta fazer a propriedade distributiva. Se essa coisa rosa grande fosse só um número, se fosse o número 7, diria, isso vai ser 7 × 8x -5 × 7. Basta distribuir. Basta multiplicar tudo por cada um dos termos. É isso que aprendemos em propriedade distributiva. Vamos lá! Vai ser tudo vezes 8x ou podemos ver como 8x vezes tudo isso. 8x vezes tudo isso. 3x² + 30x + 5. Menos 5 vezes tudo de novo ou tudo de novo vezes -5. De novo tem 3x² + 30x + 5. Agora, basta multiplicar. Distribuímos 8x para tudo e distribuímos o -5 para tudo isto. 8x × 3x² = 24x³. 8x × 30x vai dar o quê? 240x². Então, mais 240x². 8x × 5 = +40x. Depois multiplicamos esse - 5. -5 × 3x² = -15x² -5 × 30x = -150x E, -5 × 5 = -25. Basta simplificar. Só tem um termo de terceiro grau, um x³ que é esse termo aqui, 24x³. Quais são os termos "x²"? Têm o 240x², -15x². Quanto dá 240 - 15? 225x². + 225x², somamos este termo a este termo aqui. Depois, tem 40x - 150x, isso dá -110x. Por fim, tem esse -25 aqui. É o único termo constante. Terminamos. Encontramos o volume do tanque. Ele é dado por esta expressão polinomial aqui. Esse é o volume do tanque. É igual a 24x³ + 225x² - 110x -25.