If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal
Tempo atual:0:00Duração total:4:58

Transcrição de vídeo

RKA - Olá! Aqui nós temos o seguinte problema: fatore o polinômio abaixo pelo seu máximo divisor comum. Então, pause o vídeo, tente você fazer, que agora eu vou dar a resposta. O polinômio é esse: 8x²y + 12xy². Então, a primeira coisa que vou fazer aqui vai ser encontrar o máximo divisor comum entre os coeficientes 8 e 12. Então, vamos lá. O mdc, máximo divisor comum, entre 8 e 12 vai ser o que? Tem um monte de números aí que dividem ao mesmo tempo, o 8 e 12. 8 e 12 são divisíveis por 1, são divisíveis por 2, são divisíveis por 4, mas o maior deles é quem? É 4. Então, o mdc entre 8 e 12 dá igual a 4. Descobrimos aqui então, o nosso primeiro número que nos interessa, que é o 4. Agora é o seguinte, vamos pegar a parte do x aqui, então aqui esse 4 tem a ver com o 8 e com o 12. Vamos pegar agora a parte literal, a parte da letra, então o x, aqui eu tenho x² e aqui eu tenho o x. x ² é divisível por x e por x². E o x é divisível por x apenas. Então aqui, o máximo divisor comum de x² e x vai ser o próprio x. E o "y", o y² a mesma coisa, raciocínio análogo. y é divisível por y, y² é divisível por y e por y², então maior, o máximo divisor comum vai ser o y. Então, aqui eu tenho 4xy, que eu vou ter que fatorar aqui desses dois monômios aqui. Então vai ser o seguinte, aquele primeiro monômio ali, eu vou poder rescrever, fazer aqui de verde. Eu vou poder rescrever da seguinte maneira: vai ser 4xy assim, 4xy, e vou multiplicar por quanto? 4 vezes quanto dá igual a 8? 4 vezes 2. Agora o x aqui, x vezes quanto que dá x²? x vezes x, então aqui vai ser x, para que eu volte para aquele x². E o y já está aqui, não preciso colocar aqui. Então vai ficar assim. Perceba que se eu multiplicar 4 vezes 2 dá 8, x vezes x, x² e o y que está aqui, eu retorno para esse mesmo monômio aqui. E aí, eu vou somar, agora ali com o outro monômio, lembrando que esse primeiro aqui que a gente fez, está em verde, tem a ver com esse primeiro monômio para fazer o código de cor. Agora ali, vou fazer de azul escuro, esse segundo aqui. Então, eu vou fazer o seguinte novamente, vou multiplicar por 4xy, aqui eu estou fatorando, e aí eu tenho que multiplicar por quanto para dar esse 12 xy²? 4 vezes 3 é o que dá igual a 12. Então aqui, vai entrar o 3. Aqui eu tenho x, aqui eu tenho x, apenas o x, então não preciso escrever nada aqui, é o 1, 3 vezes 1 dá 3 e aqui é y², aqui eu tenho y, logo eu tenho que multiplicar aqui por y, certo? E aí, você percebe exatamente isso, 4 vezes 3, 12. x vezes 1 aqui, vai dar x. E o y vezes y dá y². Então, a gente tem isso daqui, agora você percebe que é possível também fatorar o 4xy das duas expressões, eu vou tirar esse 4xy daqui e vou tirar o 4xy dessa daqui também. E aí vai ficar da seguinte maneira, eu vou ter 4xy, vou colocar entre parênteses, que vai multiplicar por quanto agora aqui? Deixa eu colocar entre parênteses, que vai multiplicar o que? Aqui é 2x, o que sobra quando eu tiro aquele 4xy, vai me sobrar 2x aqui, e ali no outro vai me sobrar quanto? +3y, +3y, e aí a gente finaliza o problema, ou seja, para fatorar aqui, fatorar o polinômio abaixo pelo seu máximo divisor comum, vai ficar da seguinte maneira essa soma de monômios aqui, vai ficar 4xy, que multiplica 2x +3y. 2x + 3y. Até o próximo vídeo!