If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal
Tempo atual:0:00Duração total:4:54

Transcrição de vídeo

RKA - Fatorar 25x² - 30x + 9. Temos um coeficiente inicial que não é o número 1. Parece que não há fatores comuns, tanto 25 como 30 são divisíveis por 5, mas o 9 não é divisível por 5. Poderíamos fatorar isso agrupando, mas, se olharmos com um pouco mais de atenção, podemos ver uma coisa interessante, 25 é um quadrado perfeito, e 25x² também é. 9 também é um quadrado perfeito, é o quadrado de 3, ou pode também ser do -3. isso também poderia ser o quadrado de -5x, talvez isso poderia ser um quadrado perfeito. Vamos pensar sobre o que acontece quando a gente pega o quadrado perfeito de um binômio, especialmente quando o coeficiente do termo "x" não é 1. Nós temos (ax + b)². Como isso vai ficar quando fatorarmos para transformar em um trinômio? Bom, isso é a mesma coisa que (ax + b) vezes (ax + b), que é a mesma coisa que "ax" vezes "ax". "ax" vezes "ax" é a mesma coisa que "a²x²", mais "ax" vezes "b", que é "abx", mais "b" vezes "ax", que é um outro "bax" ou "abx", mais "b" vezes "b", mais "b²" e isso é igual a "a²x²" mais, esses dois são termos semelhantes, mais "2abx", mais "b²". Então, isso é o que acontece quando você eleva um binômio ao quadrado Agora, esse padrão parece funcionar bem. Deixa eu reescrever nosso problema aqui embaixo, a gente tem 25x² - 30x + 9, e isso é um quadrado perfeito, isso significa que o termo "a²" aqui, é igual a 25. Isso significa que o termo "b²", deixa eu fazer em outra cor, o termo "b²" é igual a 9. Isso nos indica que "a" poderia ser um 5 positivo ou negativo, e que "b" poderia ser um 3 positivo ou negativo. Agora, vamos ver se isso se mescla com esse termo do meio. Para que o termo do meio funcione, estou procurando uma cor diferente, "2ab", essa parte aqui, "2ab" precisa ser igual a -30. Ou, outra forma, deixa eu escrever isso aqui, "2ab" precisa ser igual a -30, ou se dividirmos os dois lados por 2 "ab" tem que ser igual a -15. -15. Isso nos sinaliza que, como o resultado é negativo, um tem que ser positivo, e outro tem que ser negativo. Para a nossa sorte, o resultado de 5 e 3, é 15. Se fizermos um deles ser positivo e outro negativo, chegamos a -15. Parece que tudo vai dar certo, podemos escolher, nós podemos escolher "a" igual a 5 positivo, e "b" igual a -3. Dessa forma vai funcionar, e o resultado de "ab" é igual a -15, ou podemos fazer "a" igual a -5, e "b" igual a 3 positivo. Qualquer uma dessas opções funciona se fatorarmos isso, vamos fazer isso, primeiro sendo "a" igual a 5, "b" igual a -3. Daí, tanto (5x - 3)², então "a" sendo 5, e "b" sendo -3, pode ser isso, ou podemos inverter os sinais dos dois termos, ou "a" pode ser -5, e "b" poderia ser 3, ou poderia ser -5x + 3 + 3², qualquer uma dessas formas serve para fatorar esse trinômio. Você poderia pensar: como podem ser iguais os resultados dessas multiplicações? Bom, esse termo, (-5x + 3), a gente pode fatorar a (-1). Então, isso é a mesma coisa que -1 vezes (5x + 3), tudo elevado do ao quadrado. E isso é a mesma coisa que -1² vezes (5x - 3)², e -1², é claro que é igual a 1. Então é por isso que isso é igual a isso. Daí, isso sai da mesma coisa que (5x - 3)², que é a mesma coisa que aquilo ali. Daí, qualquer uma dessas, qualquer uma dessas respostas está correta.