Conteúdo principal
Tempo atual:0:00Duração total:3:06

Fórmulas recursivas de progressões aritméticas

Transcrição de vídeo

neste exemplo nós temos uma função que segue uma seqüência aritmética e que os primeiros termos dessa sequência são esses colocados aqui ele pergunta quanto a rb da forma recorrente ou seja onde o próximo termo encontrado a partir do termo anterior antes de começar a resolver esse problema vou chamar a atenção para o erro que alguns alunos cometem três quatro quintos não significa três vezes quatro quintos significa três inteiros e quatro quintos ou seja isso daqui significa 15 19 sobre sim que 5 ou seja a fração imprópria onde você tem três inteiros e mais 4 500 então já dá para perceber aqui que de 4 inteiros ele foi para três inteiros e quatro quintos ele subtraiu -1 5º e daqui pra cá - um quinto a razão é a mesma e daqui pra cá também -1 5º muito bem o termo a é para quando n foi igual a 1 ou seja então quando for g1 ora g1 nós sabemos é quatro então g1 é 4 significa que há é igual a quatro nós sabemos que o g 4 é igual ao gento e hoje ele - um é igual ao g 3 -1 5º e realmente o g4 é 32 500 é igual a 3 três quintos -1 5º tá correto o que faz com que nós chegamos à conclusão que b é igual a menos um quinto então a resposta seria para g n menos um - um quinto para n maior do que 1 a 1 e essa é a nossa fórmula recursiva