If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal

Cálculo de expressões com duas variáveis: frações e números decimais

Transcrição de vídeo

RKA - Nesse exercício, aqui, nós estamos dando valores numéricos para expressões algébricas. Então, é o seguinte: eu determinei uma expressão aqui, "7j + 5 - 8k", quando "j = 0,5" e "k = 0,25". Então, eu quero que calcule o valor numérico dessa expressão aqui, quando o "j" vale "0,5" e o "k" vale "0,25". Você pode pausar o vídeo, e tentar você fazer, que, agora, eu vou dar resposta. Pausou? Então, vamos lá. É o seguinte: aqui eu vou fazer 7 vezes o "j" (né?... porque eu não tenho nenhum símbolo aqui entre o número e a letra... então, é porque está multiplicando)... então, 7 vezes "j" vai ficar 7 vezes "0,5". Eu troco: no lugar do "j", eu coloco "0,5". Simplesmente assim. Então, mais 5 (aquele 5 ali não tem nenhuma letra envolvida com ele)... menos o 8 multiplicado pelo valor do "k". Quanto vale o "k"? Vale "0,25". E, agora? Agora, eu posso fazer da seguinte maneira: eu vou fazer 7 vezes "0,5" como sendo igual a quanto? Quanto que é 7 vezes 5? 35. Então, 7 vezes "0,5" vai dar 3 inteiros e 5 décimos, ou seja, "3,5" aqui. Sim ou não? Eu ainda estou somando 5... "3,5 + 5" menos isso daqui. Quanto vai dar 8 vezes "0,25"? Eu posso entender o "0,25" como sendo a mesma coisa que "1/4". Sim ou não? "1/4" é "0,25", então, 8 vezes "1/4" dá 2; é a mesma coisa que 8 dividido por 4. Então, aqui, vai dar 2. Claro, com o sinal de menos aqui. E agora? Quanto vai dar isso tudo? Ora, isso tudo aqui vai dar igual a quanto? Isso vai dar "8,5" (que é "3,5 + 5") e "8,5 - 2" vai dar "6,5", desse jeito aqui. Muito fácil, muito simples. Vamos fazer mais uma aqui, porque é bem interessante. Você pode, claro, pausar o vídeo, e você tentar fazer também. Vamos lá. Da mesma forma, isso daqui se faz substituindo a letra pelo valor atribuído a ela aqui, né? Então, eu vou ter "0,1" que multiplica pelo "m", que vale 30. Então, "0,1" vezes 30... mais o 8 (certo?)... menos o 12, que está multiplicando pelo valor do "n". Quanto é o "n" aqui? "1/4"... Então, 12 vezes "1/4". E quanto vai dar isso daqui? Ora, isso aqui vai ser igual... a quanto? Primeiro, eu vou multiplicar esse "0,1" pelo 30. Então, aqui, "0,1" vezes 30, isso é a mesma coisa que um "1/10" vezes 30. Quanto que dá "1/10" vezes 30? "1/10" de 30 é a mesma coisa que o 3, beleza?... mais aquele 8 ali (né?), menos o 12, vezes "1/4". Quanto vai dar "-12" vezes "1/4"? Se eu tenho 12 e eu divido por 4 (é isso que está sendo representado aqui, né?), isso vai dar igual, então, a "-3"... 12 dividido por 4 dá 3. Então, "-3" aqui. E, aí, você repara o seguinte: eu vou ter "3 - 3". Isso dá "0". Então, eu só tenho ali, como resultado final, o 8. A resposta final aqui, para quando o "m" vale 30 e o "n" vale "1/4", é igual a 8, beleza? Até o próximo vídeo.