Se você está vendo esta mensagem, significa que estamos tendo problemas para carregar recursos externos em nosso website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Conteúdo principal

Estratégias de eliminação

Pratique identificar estratégias de eliminação de variáveis em um sistema de equações.

Quer participar da conversa?

Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.

Transcrição de vídeo

RKA3JV - E aí pessoal, tudo bem? Nesta aula, nós vamos ver algumas estratégias para eliminar variáveis em um sistema de equações. E vamos ver isso com alguns exercícios. O primeiro que temos aqui é, qual dessas estratégias eliminaria uma variável no sistema de equações abaixo? Ou seja, este sistema aqui. Escolha uma alternativa. Na primeira alternativa, nós temos que somar as equações. Ou seja, eu vou somar essa equação aqui, que eu vou chamar de equação I, com esta outra equação, que eu vou chamar de equação II. E se as somarmos nós vamos ter que 5x + 5x = 10x, e -3y + 4y = 1y E isso vai ser igual a -3 + 6 = 3. É importante você sempre ir somando da esquerda para direita. E olha, nós não eliminamos nenhuma variável. Portanto, esta alternativa não é correta. Deixe-me apagar isso aqui. Vamos olhar a alternativa "B". Nela temos o seguinte, subtrair a primeira equação pela segunda. Ou seja, nós vamos pegar essa primeira equação e subtrair por essa equação aqui. 5x - 5x = 0. Ou seja, a variável "x" foi eliminada. -3y - 4y = -7y. Isso vai ser igual a -3 - 6 = -9. Então, a letra "B" é a alternativa correta, não é? Esta alternativa aqui é correta. Se nós subtrairmos a primeira equação pela segunda, nós vamos eliminar a variável "x". Ok! E a alternativa "C"? Multiplicar a primeira equação por 2, depois somar as equações. Inicialmente, vamos multiplicar a primeira equação por 2. Então, se nós multiplicarmos a primeira equação por 2, nós vamos ter que 5x vezes 2 = 10x. E -3y vezes 2 = -6y. E isso vai ser igual a -3 vezes 2 = -6. E se nós somarmos essa nova equação com essa segunda equação, eu posso até colocar a segunda aqui para ficar mais claro de ver. Então, aqui embaixo 5x + 4y = 6. Se nós somarmos as duas equações, nós vamos ter que 10x + 5x = 15x. E -6y + 4y = -2y. E -6 + 6 = 0. Ou seja, nós não eliminamos nenhuma variável. Portanto, essa alternativa aqui também não é correta. Vamos fazer mais um exemplo? E aqui, novamente, nós temos a mesma pergunta. Qual dessas estratégias eliminaria uma variável no sistema de equações abaixo? Só que agora nós temos este sistema aqui. E na primeira alternativa nós temos o seguinte: multiplicar a segunda equação por 2, depois somar as equações. Será que essa estratégia elimina alguma das variáveis? Pause o vídeo e tente resolver sozinho. Ok! Primeiro, nós temos que multiplicar a segunda equação por 2. Isso significa que nós vamos multiplicar todos os termos dela. Ou seja, "x" vezes 2 = 2x, -2y vezes 2 = -4y. Isso vai ser igual a 5 vezes 2 = 10. Agora, o que temos que fazer é somar com a primeira equação. Eu posso colocar essa primeira equação aqui de novo. Então, 4x + 4y = - 2. E se eu somar essas duas equações, nós vamos ter que 4x + 2x = 6x. E olha, 4y - 4y = 0. Isso vai eliminar a variável "y". E -2 + 10 = 8. Ou seja, a alternativa "A" de fato elimina uma variável, ela elimina a variável "y". Portanto, essa alternativa é correta. A alternativa "B" diz o seguinte: multiplicar a segunda equação por 4, depois subtrair a segunda equação pela primeira. Vamos lá! A segunda equação é essa, e multiplicá-la por 4 significa multiplicar todos os termos dela. Ou seja, "x" vezes 4 = 4x -2y vezes 4 = -8y. E 5 vezes 4 = 20. Depois que fizermos isso, nós temos que subtrair pela primeira equação. E se eu colocar a primeira equação aqui que é 4x + 4y = -2, nós vamos ter que subtrair essa equação por essa. Então, 4x - 4x = 0. Ou seja, a variável "x" foi eliminada. Eu posso até cortá-la daqui. Agora, -8y - 4y = -12y. E 20 - (-2) = 22. Isso porque eu peguei o 20 e subtraí por -2, isso vai dar 20 + 2, que é a mesma coisa que 22. Então, essa alternativa também é correta. Então, deixe-me apagar tudo isso aqui. E vamos ver se a alternativa "C", a estratégia "C" também serve para eliminarmos uma variável no nosso sistema. Ok! Aqui, nós temos: multiplicar a primeira equação por 1/2, depois somar as equações. Vamos lá! Multiplicar uma equação por 1/2 é a mesma coisa que dividir por 2. Então, o que significa que 4x vezes 1/2 = 2x. E 4y vezes 1/2 é a mesma coisa que 2y. E -2 vezes 1/2 é a mesma coisa que -1. Depois disso, nós temos que somar essas equações. Eu posso colocar aqui embaixo x - 2y = 5. E se somarmos as equações nós vamos ter que 2x + x = 3x. E 2y - 2y = 0. Ou seja, a variável "y" vai ser eliminada. Isso vai ser igual a -1 + 5 = 4. Ou seja, é essa alternativa "C" também elimina uma variável, ela elimina a variável "y". Está vendo? Existem diferentes maneiras de eliminar uma variável dentro de um sistema. Vamos ver mais um exemplo? E, de novo, nós temos: qual dessas estratégias eliminaria uma variável no sistema de equações abaixo? Só que agora nós temos esse sistema. Na primeira alternativa nós temos: subtrair a segunda equação pela primeira equação. Bem, a primeira equação é essa aqui e a segunda é essa. Se eu subtrair aqui -2x - 3x, isso não vai dar zero. E se eu subtrair 4y - (-3y), isso também não vai dar zero. Portanto, essa primeira alternativa de cara já não vai eliminar uma variável. Se você quiser, você pode até subtrair as equações para conferir. Mas, vamos lá! Na alternativa "B" nós temos o seguinte: multiplicar a primeira equação por 3, multiplicar a segunda equação por 2, somar as equações. A primeira coisa que temos que fazer aqui é multiplicar a primeira equação por 3. Então, eu vou multiplicar toda essa equação por 3. E 3x vezes 3 = 9x, depois - 3y vezes 3 = -9y. E 7 x 3 = 21. O segundo passo é multiplicar a segunda equação por 2. Então, multiplicando toda essa equação por 2 nós temos: -2x vezes 2 = -4x. 4y vezes 2 = 8y. E 7 vezes 2 = 14. Depois disso, nós temos que somar as equações. Então, eu vou somar essas equações aqui. E aí, eu vou ter 9x + (-4x) e vai ser a mesma coisa que 5x. Depois, nós vamos ter -9y + 8y = -y. E 21 + 14 = 35. Ou seja, nenhuma das variáveis foi eliminada. Portanto, essa alternativa também não oferece uma estratégia ideal. Deixe-me apagar isso tudo aqui. E vamos olhar a alternativa "C". E temos o seguinte: multiplicar a primeira equação por 2, multiplicar a segunda equação por 3, somar as equações. E multiplicando a primeira equação por 2, essa equação aqui, nós vamos ter que 3x vezes 2 = 6x. -3y vezes 2 = -6y. E 7 vezes 2 = 14. Agora, multiplicando a segunda equação por 3, nós vamos ter -2x vezes 3 = -6x. 4y vezes 3 = 12y. E 7 vezes 3 = 21. E somando as duas equações, imediatamente você já pode ver que vamos conseguir eliminar o "x". Porque 6x - 6x = 0. Portanto, essa estratégia é boa para eliminar uma variável. Eu espero que esta aula tenha lhes ajudado! E até a próxima, pessoal!