Se você está vendo esta mensagem, significa que estamos tendo problemas para carregar recursos externos em nosso website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Conteúdo principal

Prova da propriedade do produto de logaritmos

Neste vídeo, provamos a propriedade da soma de logaritmos, log(a) + log(b) = log(ab). Versão original criada por Sal Khan.

Quer participar da conversa?

Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.

Transcrição de vídeo

RKA - Olá. Vamos trabalhar um pouco com as propriedades logarítmicas. Vamos rever rapidamente o que é um logaritmo. Se eu escrever "logx A" é igual a: "n", o que isso significa? Significa apenas que "x elevado a n" é igual a: "A". Eu acho que já sabem disso, não é? Aprendemos no vídeo sobre logaritmos. Então é muito importante perceber quando estão calculando uma expressão logarítmica, como "logx A", a resposta que obtém é um expoente. Na verdade, esse "n" é apenas um expoente e é igual a isto aqui. E daí, poderiam ter escrito isso assim: como esse "n" é igual a isto, poderiam ter escrito apenas que "logx A" é igual a: "A". Eu peguei esse termo "n" e substitui por esse termo e queria escrever dessa forma porque quero que tenham uma compreensão intuitiva da noção de que um logaritmo, quando calcula, na verdade, ele é um expoente. Vamos usar esta noção. E é daqui realmente que todas as propriedades logarítmicas derivam. Na verdade, eu quero chegar nas propriedades dos logaritmos brincando com tudo isso. E mais tarde, eu vou resumir, e então, comprovar. Quero demonstrar como as pessoas descobriram originalmente estas coisas. Vamos trocar de cor. É, eu acho que fica mais interessante. Digamos então que "x elevado a l" é igual a: "A". Se escrever como um logaritmo, dá para escrever que "logx A" é igual a "l", correto? Apenas reescrevi o que estava na linha superior. Vamos trocar de cor. E se eu dissesse que "x elevado a m" é igual a: "B"? É a mesma coisa, apenas troquei as letras, mas significa que "logx B" é igual a: "m", tá? Apenas fiz a mesma coisa que havia feito nesta linha, só troquei as letras. Vamos continuar e ver o que acontece. Usando outra cor. Eu tenho um número infinito de cores aqui. Nunca vou ficar sem cor. Digamos que eu tenha "x elevado a n", e daí, vocês me perguntam: aonde você quer chegar? Aguardem, vocês vão ver. É bem legal. "x elevado a n" é igual a: "A vezes B". "x elevado a n" é igual a: "A vezes B". E isto equivale a dizer que é igual a: "logx de A vezes B". O que podemos fazer com tudo isso? Vamos começar com esse aqui. "x elevado a n" é igual a: "A vezes B". Como a gente poderia reescrever isso? "A" é isto. "B" é isso. Certo? Vou reescrever. Sabemos que "x elevado a n" é igual a: "A". "A" é isto: "x elevado a l". E o que é "B"? Vezes B. "B" é: "x elevado a m". Eu não estou fazendo nenhuma coisa incrível aqui. Mas quanto é: "x elevado a l" vezes "x elevado a m"? A gente sabe com base na teoria da potenciação que quando multiplicamos duas expressões que tem a mesma base e expoentes diferentes, só precisamos somar os expoentes. Então é igual a... (uma cor neutra) Quando tem a mesma base e estão multiplicando os números, só precisam somar os expoentes. E isto é igual a: "x elevado a (eu vou ficar trocando de cor porque eu acho que é melhor) (l+m)" (e dá muito trabalho ficar trocando as cores, mas vocês estão entendendo, né?) "x elevado a n" é igual a: "x elevado a (l+m)". Vou colocar o "x" aqui (queria ter usado verde). "x elevado a (l+m)". E agora? A gente sabe que "x elevado a n" é igual a "x elevado a (l+m)". Temos a mesma base, esses expoentes devem ser iguais, então sabemos que "n" é igual a "l+m". E para que serve isso? Estava meio que brincando com os logaritmos. Eu estou chegando a algum lugar. Eu acho que você vai ver que sim. Qual é outra forma de escrever "n"? Dissemos que "x elevado a n" é igual a: "A vezes B" (opa, pulei uma etapa aqui). Então isso significa (voltando para cá): "x elevado a n" é igual a: "A vezes B", que significa que "logx de (A vezes B)" é igual a: "n". Vocês sabiam disso, eu não. Espero que não achem que eu estou voltando ou qualquer coisa assim. Eu só esqueci de escrever isso da primeira vez. Enfim, enquanto a "n", qual é outra forma de escrever "n"? Outra forma de escrever "n" está logo aqui: "logx de (A vezes B)". Agora sabemos que se apenas substituir "n" por isso, a gente vai ter: "logx de (A vezes B). E isto é igual a "l" Outra forma de escrever "l" está aqui em cima. Ele é igual a: "logx de (A+m)". Quem é "m"? "m" está logo aqui: "logx de B". E tem agora nossa primeira propriedade logarítmica. O "logx de (A vezes B)" é igual a: "logx de A" + "logx de B". Espero que isso prove o que acabei de dizer, e se quiser saber intuitivamente porque funciona, é que logaritmos não são nada além de expoentes, e com isso chegamos ao final desse vídeo. No próximo vídeo, eu vou provar outra propriedade logarítmica. Até lá.