Se você está vendo esta mensagem, significa que estamos tendo problemas para carregar recursos externos em nosso website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Conteúdo principal

Exemplo resolvido: como usar o teorema do valor intermediário

Dada uma função contínua f tal que f(-2)=3 e f(1)=6, escolhemos a afirmação que é garantida pelo teorema do valor intermediário.

Quer participar da conversa?

Nenhuma postagem por enquanto.
Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.

Transcrição de vídeo

RKA2G - Seja "f" uma função contínua no intervalo fechado de -2 até 1, onde f(-2) vale 3 e f(1) vale 6. Qual das sentenças abaixo é verdadeira, observando o teorema do valor intermediário? Se você não está familiarizado com o teorema do valor intermediário, sugiro que você assista a outros vídeos da Khan Academy. O que diz o teorema do valor intermediário? Que, para um L entre 3 e 6, existe pelo menos um valor "c" entre -2 e 1, tal que f(c) seja igual a L. Ou seja, como ela é contínua neste intervalo, vai existir um f(c) que seja igual a L neste intervalo. Vamos ver a primeira afirmativa. Ela diz: f(c) = 4 para pelo menos um "c" entre 3 e 6. Ora, "c" entre 3 e 6 não está definida aqui. Nós não sabemos o que acontece com a função. Então, não está garantido que f(c) possa ser igual a 4. Aqui é nosso "x". f(x) pode assumir esse valor? Pode assumir, mas não necessariamente pode assumir. Ou seja, aqui é um truque para nos pegar. Muito bem. f(c) = 0 para pelo menos um "c" entre -2 e 1. O intervalo está correto, mas não está garantido que a gente passe pelo zero. Está garantido que a gente passe pelo intervalo entre 3 e 6. Portanto, esta segunda também não está correta. A terceira: não está garantido que ele passe pelo zero, ainda mais no intervalo entre 3 e 6, que está bem longe do intervalo onde nossa função está definida. Portanto, esta também não está correta. Vamos ver a quarta opção e queremos que ela seja verdadeira. f(c) = 4 para pelo menos um "c" entre -2 e 1. Realmente, para -2 e 1, ela passa por todos os valores de 3 até 6. E 4 é um valor de 3 até 6. Portanto, com certeza ela passa por um ponto f(c) = 4 para um valor de "c" que esteja entre -2 e 1, pelo teorema do valor intermediário. Para você verificar o que nós estamos falando, vamos plotar aqui o gráfico. Vamos colocar o eixo "y" aqui, vamos colocar o eixo "x" aqui e vamos colocar os pontos (está fora de escala): -1, -2 e 1 E os pontos 3 e 6. Ela diz que, para f(-2), a função vale 3. Portanto, este ponto pertence à função. Para f(1), ela vale 6. Portanto, este ponto pertence à função. A maneira como a função se comporta, ela é contínua. Ela pode ser um negócio desse tipo aqui, ela pode ser algo desse tipo aqui, ela pode ser até uma linha reta daqui para cá. Verifique que, entre -2 e 1, se eu disser que aqui é o ponto 4, vamos colocar este ponto aqui como ponto 4, verifique que, para esta função que está em marrom, ela passa duas vezes pelo ponto 4. Aqui, acho que talvez não passe. Passa pelo menos uma vez pelo ponto 4. Aqui está o "c". Nesta outra função, logo de início ela partiu do 3 e, se ela subiu, obviamente ela passou pelo ponto 4. Então, o nosso "c" para esta função. E esta outra função, o ponto 4 seria por aqui. Ou seja, tem um "c" que leva a 4, uma vez que a função é contínua.