Se você está vendo esta mensagem, significa que estamos tendo problemas para carregar recursos externos em nosso website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Conteúdo principal

Teste da comparação direta

Se todos os termos de uma série forem menores do que seus termos correspondentes em alguma série convergente, ela também deve convergir. Essa noção está na base do teste da convergência direta. Aprenda mais sobre isso aqui.

Quer participar da conversa?

Nenhuma postagem por enquanto.
Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.

Transcrição de vídeo

RKA8JV - Neste vídeo, vamos falar um pouco sobre o teste por comparação de séries. Então, vamos supor que você tenha uma série de "n = 1" até infinito de aₙ, e você tenha outra série de "n = 1" até infinito de bₙ, e você tenha que aₙ e bₙ sejam maiores do que zero. Portanto, esta série é positiva, vai até infinito, esta série também é positiva. Você pode, através da sua intuição, ou mesmo provar, que determinada série converge para um determinado ponto. O que nós vamos fazer aqui é que, se aₙ ≤ bₙ isso para todos os "n", 1, 2, 3, etc., nós podemos determinar se uma série converge ou não baseado na outra série. Por exemplo, se você sabe que a série bₙ converge e aₙ < bₙ, significa que aₙ também converge. Portanto, vamos escrever isso. Se a série de bₙ converge para um determinado ponto finito, ela é convergente, isso implica que a série aₙ também converge, por ela ser menor. Então, você pode, se você souber que essa determinada série converge, vai implicar que uma série desconhecida que você não sabe se converge ou não, mas os termos são menores, também converge. Agora, vamos pensar ao contrário. Vamos pensar o seguinte: se você sabe que uma determinada série diverge, uma série aₙ é divergente, vai para o infinito, como aₙ < bₙ, nós podemos dizer que se a série que vai de 1 até infinito de aₙ é divergente, ou seja, ela diverge, isso implica que a série maior, ou seja, bₙ, que é maior, também diverge, uma vez que esses números são positivos, eles não oscilam, e nós temos a segunda série que também diverge. Você pode, baseado em uma série que seja maior e seja divergente, provar que a série menor converge ou não, e isso nós vamos ver nos vídeos posteriores.