Conteúdo principal
Estatística Avançada
Curso: Estatística Avançada > Unidade 7
Lição 3: Probabilidade condicional- Probabilidade condicional e independência
- Probabilidade condicional com o Teorema de Bayes
- Probabilidade condicional usando tabelas de contingência
- Cálculo da probabilidade condicional
- Probabilidade condicional e independência
- Exemplo de diagrama de árvore de probabilidade condicional
- Diagramas de árvore e probabilidade condicional
© 2023 Khan AcademyTermos de usoPolítica de privacidadeAviso de cookies
Probabilidade condicional e independência
Em probabilidade, dizemos que dois eventos são independentes quando o fato de saber que um evento ocorreu não altera a probabilidade do outro evento.
Por exemplo, a probabilidade de uma moeda justa mostrar "cara" depois de ser lançada é de 1, slash, 2. E se soubéssemos que o dia era terça-feira?
Isso altera a probabilidade de se tirar "cara"? É claro que não. A probabilidade de se tirar "cara", sabendo que o dia é terça-feira, continua sendo 1, slash, 2. Então, o resultado de se lançar uma moeda e de o dia ser terça-feira são eventos independentes; saber que era terça-feira não mudou a probabilidade de se tirar "cara".
Nem toda situação é tão óbvia quanto essa. Por exemplo, gênero e dominância de um lado do corpo (canhoto ou destro)? Talvez pareça que o gênero de uma pessoa e o fato de ela ser canhota sejam eventos totalmente independentes. Mas, quando analisamos as probabilidades, vemos que cerca de 10, percent de todas as pessoas são canhotas, mas que aproximadamente 12, percent das pessoas do sexo masculino são canhotas. Sendo assim, esses eventos não são independentes, já que saber que uma pessoa qualquer é do sexo masculino aumenta a probabilidade de que ela seja canhota.
A ideia principal é que verifiquemos a independência com probabilidades.
Dois eventos, A e B, são independentes se P, left parenthesis, start text, A, space, end text, vertical bar, start text, space, B, end text, right parenthesis, equals, P, left parenthesis, start text, A, end text, right parenthesis e P, left parenthesis, start text, B, space, end text, vertical bar, start text, space, A, end text, right parenthesis, equals, P, left parenthesis, start text, B, end text, right parenthesis.
Exemplo 1: renda e universidades
Pesquisadores entrevistaram alunos recém-formados de duas universidades diferentes quanto à renda anual deles. A tabela a seguir mostra os dados de 300 alunos que responderam à pesquisa.
Renda anual | Universidade A | Universidade B | TOTAL |
---|---|---|---|
Inferior a $20.000 | 36 | 24 | 60 |
De $20.000 a $39.999 | 109 | 56 | 165 |
Igual ou superior a $40.000 | 35 | 40 | 75 |
TOTAL | 180 | 120 | 300 |
Suponha que tenhamos escolhido um aluno aleatoriamente a partir desses dados.
Os eventos "renda igual ou superior a $40.000" e "frequentou a Universidade B" são independentes?
Vamos verificar usando a probabilidade condicional.
Exemplo 2: renda e universidades (continuação)
Aqui estão os mesmos dados do exemplo anterior:
Renda anual | Universidade A | Universidade B | TOTAL |
---|---|---|---|
Inferior a $20.000 | 36 | 24 | 60 |
De $20.000 a $39.999 | 109 | 56 | 165 |
Igual ou superior a $40.000 | 35 | 40 | 75 |
TOTAL | 180 | 120 | 300 |
Suponha que tenhamos escolhido um aluno aleatoriamente a partir desses dados.
Os eventos "renda inferior a $20.000" e "frequentou a Universidade B" são independentes?
Vamos verificar usando a probabilidade condicional.
E se as probabilidades forem muito próximas?
Quando verificamos independência em conjuntos de dados no mundo real, é raro conseguir probabilidades perfeitamente iguais. Quase todos os eventos reais que não envolvem jogos de azar são dependentes em algum grau.
Na prática, muitas vezes assumimos que eventos são independentes e testamos essa suposição em dados da amostra. Se as probabilidades forem significativamente diferentes, então concluímos que os eventos não são independentes. Aprenderemos mais sobre esse processo em estatística inferencial.
Por último, tenha cuidado para não tirar conclusões sobre causa e efeito, a menos que os dados sejam obtidos de um experimento bem desenvolvido. Como desafio, você consegue pensar em algumas variáveis externas (sem ser as universidades) que possam ser a causa da diferença de renda entre os alunos das duas universidades do Exemplo 2?
Quer participar da conversa?
Nenhuma postagem por enquanto.