Conteúdo principal
Biblioteca de Aritmética
Curso: Biblioteca de Aritmética > Unidade 5
Lição 27: Divisão de frações por fraçõesEntendendo a divisão de frações
Usando uma reta numérica, vamos explicar por que multiplicar pela inversa é o mesmo que dividir. Versão original criada por Sal Khan.
Quer participar da conversa?
- Ok. Vamos construir uma reta numérica que represente 8/3. Mas... o que são 8/3 em relação a 1 inteiro? Pergunta essa fundamental porque o inteiro sempre será o ponto de referência para se identificar uma fração de seu todo. Logo:
8/3 = (3/3 + 3/3) + 2/3 ...................ou.................... 8/3 = (2) 2/3.
Na reta numérica:
|---|---|---|---|---|---|---|---|---|--->
0 1 2 3
0 3/3 6/3 9/3
Então, qual a posição de 8/3 na reta numérica?
|---|---|---|---|---|---|---|---|---|--->
| |
0 8/3
Agora 8/3 : 1/3 = ?
Como demonstrado na reta numérica faz-se necessário se dar 8 saltos de cada 1/3 para se chegar a 8/3.
Portanto 8/3 : 1/3 = 8.
E como a divisão é a operação aritmética inversa a multiplicação:
8/3 x 3/1 = 24/3 = 8
Na reta numérica:
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--->
| | | | | | | | |
0 1 2 3 4 5 6 7 8
0 3/3 6/3 9/3 12/3 15/3 18/3 21/3 24/3
Agora 8/3 : 2/3 = ?
Como também demonstrado na reta numérica no vídeo, faz-se necessário se dar 4 saltos de 2/3 para se chegar a 8/3.
Portanto 8/3 : 2/3 = 4.
E como a divisão é a operação inversa a multiplicação:
8/3 x 3/2 = 24/6 = 4.
Vou editar a reta numérica em breve (falta de tempo).(6 votos) - Como sei qual fração inverto?(3 votos)
- Na divisão de fração você inverte a segunda fração e resolve a operação como se fosse uma multiplicação de frações ou mantenha a segunda fração como esta e multiplica em cruz, vai a seu critério!(9 votos)
- Tá, essa aula está sendo um pé no saco pra entender. É muito abstrata, cara(3 votos)
- como faremos 3(inteiros) com 1/2(2 votos)
- Fazemos da seguinte maneira:
Conserva a primeira fração e multiplica pelo inverso da segunda.
3 ÷ 1/2 é igual a 3 x 2/1
3 x 2/1 = 6(2 votos)
- Se os denominadores forem diferentes tipo 8/3 e 1/4 como faço a representação dessa divisão na reta numérica?(1 voto)
- Mas por que deu 4 , na conta oito terços dividido por três meios ?(1 voto)
- 8/3 : 2/3 = 8/3 x 3/2
A resposta está no começo do vídeo e aos, onde Khan explica que ao dividir uma fração inverte-se o denominador e o numerador (da fração à direita), multiplicando-se os termos. 4:00(2 votos)
- como que faz a conta e como achar o resultado??(1 voto)
Transcrição de vídeo
RKA17JV Vamos pensar no que significa
pegar 8/3 e dividir por 1/3. Então, deixa eu desenhar uma reta numérica. Aqui é minha reta numérica, isso é zero, aqui é 1, 2, talvez aqui seja o 3, vou marcar 8/3, e pra fazer eu só
preciso dividir cada espaço em terços. Vamos ver, é 1/3, 2/3, 3/3, 4/3, 5/3, 6/3, 7/3 e 8/3 bem aqui. E aí claro, 9/3 nos daria 3,
então é 8/3. Agora, uma forma de pensar 8/3 dividido
por 3 é se pegar esse comprimento e disser: "quantos saltos tem que dar pra chegar lá?" Se estiver dando saltos de 1/3, ou em essência, estamos quebrando isso. Se fosse quebrar 8/3 em partes de 1/3, quantas partes eu teria? Ou quantos espaços eu teria? Vamos pensar. Se estiver tentando dar saltos de 1/3, vamos ter que dar 1, 2, 3, 4, 5, 6, 7, 8 saltos. A gente poderia ver como, deixe-me fazer de uma cor diferente, laranja. Pegamos esses 8 saltos e poderia ver 8/3 divididos por 1/3
como sendo igual a 8. Agora, por que faz sentido? Quando você está dividindo coisas em terços,
para cada buraco terá que ter 3 saltos. Qualquer valor que esteja tentando obter
terá que ter aquele número, vezes 3 saltos. Outra forma de pensar é que 8/3 dividido por 1/3 é a mesma coisa que 8/3 vezes 3. E a gente poderia tanto escrever isso assim, como vezes 3 assim, ou se quiser escrever
3 como uma fração, sabemos que 3 é a mesma coisa que 3 dividido por 1. E já sabemos como multiplicar frações. Multiplicar os numeradores: 8 vezes 3, você tem 8, vou fazer da mesma cor, você tem 8 vezes 3 no numerador agora, 8 vezes 3, e aí tem 3 vezes 1 no denominador,
o que daria 24 terços. 24/3, o que é a mesma coisa que 24 dividido por 3,
o que, mais uma vez, é igual a 8. Agora, vamos ver se ainda faz sentido. Ao invés de dividir por 1/3, vamos dividir por 2/3. Vamos pensar sobre o que é 8/3 dividido por 2/3. Mais uma vez é como fazer a pergunta: "se quiser dividir essa seção de zero a 8/3 em partes de 2/3, ou saltos de 2/3, quantas seções, ou quantos saltos, eu teria que dar?" Pense. Um salto, vamos fazer com uma cor diferente, podemos fazer 1 salto,
não é a mesma cor que meu 8/3. Dá pra dar um salto... Meu computador está fazendo alguma coisa estranha. Podemos dar 1 salto, 2 saltos, 3 saltos e 4 saltos. A gente vê, 8/3 divididos por 2/3
é igual a 4. Agora, faz sentido aqui? Se pegar 8/3 e fizer a mesma coisa, dizendo: "olha, dividir por uma fração é a mesma coisa
que multiplicar pelo seu inverso", neste caso, dá para multiplicar por 3/2. Vamos multiplicar pelo inverso de 2/3. Trocamos o numerador e o denominador, multiplicamos isso vezes 3/2,
ou 3 sobre 2, e temos o quê? No numerador, mais uma vez, temos 8 vezes 3, que é 24, e no denominador, tem 3 vezes 2, que é 6. Agora, tem 24 dividido por 6, que é igual a 4. Faz sentido? Ter metade da resposta? Se pensar sobre qual é a diferença entre
o que fizemos aqui o que fizemos aqui, esses são quase iguais, exceto onde não dividimos, ou poderia dizer que um dividiu por 1,
enquanto o outro dividiu por 2. Isso faz sentido? Com certeza, porque você pulou duas vezes mais longe, então, tinha que dar metade
do número de passos. No primeiro exemplo, viu por que
faz sentido multiplicar por 3. Quando divide por uma fração, para
cada parte, está dando 3 saltos. Por isso que quando divide por essa fração, ou qualquer coisa que esteja no denominador,
você multiplica por isso. Agora, quando o numerador for maior que 1,
cada salto está indo duas vezes mais longe como fez neste primeiro, e teria
que fazer metade dos saltos. Espero que faça sentido. É fácil pensar sobre isso
mecanicamente, como dividir frações. Pegar 8/3 divididos por 1/3
é a mesma coisa que 8/3 vezes 3/1 ou 8/3 divididos por 2/3
é a mesma coisa que 8/3 vezes 3/2. Mas espero que este vídeo desperte um pouco mais
de intuição em você do porquê esse é o caso.