If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal

Problema de multiplicação de frações: muffins

Resolução de um problema multiplicando duas frações. Criado por Sal Khan e Instituto de Tecnologia e Educação de Monterey.

Quer participar da conversa?

  • Avatar leaf orange style do usuário Elisabeth Schaich Miranda Martynetz
    Estou tendo muita dificuldade de aceitar " multiplicação " meia receita eu entendo como metade... aí multiplicamos ... na visualização fica fácil... mas no meu raciocínio.. estou achando dificuldades... alguém sabe explicar de uma outra forma,?
    (2 votos)
    Avatar Default Khan Academy avatar do usuário
    • Avatar blobby green style do usuário Athos Lima
      Elisabeth, entendo sua confusão e admito que fico assim às vezes em alguns conteúdos, mas deixa eu te explicar melhor o que acontece, nas explicações dos vídeos fica realmente um pouco confuso. Vou usar o exemplo do vídeo, mas de outra maneira: Você tem 3/4 de uma receita, mas quer fazer apenas metade dela, ou 1/2, bem, para isso pensar da maneira lógica nós teríamos 1/2 x 3/4 que daria "1,5/2". Isso está correto até certo ponto, mas não é legal deixar um número de fração em decimal, por isso, o que fazemos ao multiplicar o 1/2 x 3/4 é criar algo equivalente a metade de 3/4, 1,5/2, como coloquei acima, porém, escrito de outra forma, ficando assim 3/8. Entenda que toda fração é uma divisão, e para provar que 3/8 é equivalente a metade de 3/4, basta dividir o numerador pelo denominador e dividir o 3/4 por 2 (metade), que obterá os mesmo resultados, 3/4 dividido por 2 = 0,375 e da mesma maneira 3/8 = 0,375. Eles são equivalentes, então metade de 3/4 = 3/8, ou 1/2 x 3/4 = 3/8. Espero ter esclarecido sua dúvida e de outras pessoas :)
      (5 votos)
  • Avatar male robot hal style do usuário gabrieltreisg
    a explicação é boa, mas deveria fazer com números maiores, para ficar mais explicito
    (5 votos)
    Avatar Default Khan Academy avatar do usuário
  • Avatar aqualine ultimate style do usuário Louise Galluccio
    Demora prá fazer sentido, no meu caso :(
    (3 votos)
    Avatar Default Khan Academy avatar do usuário
  • Avatar duskpin ultimate style do usuário Kamila Canuto
    Achei confuso. Na minha cabeça o certo seria dividir 3/4 por dois. Então multiplicar e dividir frações é a mesma coisa?
    (1 voto)
    Avatar Default Khan Academy avatar do usuário
    • Avatar blobby green style do usuário Vinicius Barbosa
      Não é a mesma coisa não. Dividir uma fração por outra é a mesma coisa de multiplicar a de cima pelo inverso da de baixo, exemplo 1/3 dividido por 3/1 = 1/3 x 1/3 = 1/9.

      Neste caso particular estaria certo dividir por 2, ficaria 3/4/2=3/4 x 1/2 =3/8
      Abraço.
      (4 votos)
  • Avatar blobby green style do usuário danielcmelonio7
    No começo eu achei que tava confuso e no fim achei que tava no começo. Repetindo achei que compreenderia, mas foi como se assistisse novamente pela primeira vez. Seguinte:

    (Recomendo desenhar cada passo)

    1. Uma receita que requer 3/4 da xícara logo tornamos dividimos o quadrado em 4 partes e pintamos 3. (3/4)

    2. Agora nós queremos somente metade do conteúdo necessário para a receita, e dividimos as 3 partes pintadas, ao meio. (1/2) de (3/4)

    3. Se observarmos, essa divisão ao meio, fez com que nós tivéssemos agora. (3/6) referente aos 3/4 anteriores.

    4. Mas, se tratando do conteúdo de toda a xícara, nós a dividimos em 8 partes iguais. E a nossa metade de 3/4 se torna 3/8 de toda a xícara. (3/4)(1/2)=(3/8)

    Bônus: pode ter permanecido complexo, mas reflita sempre sobre o dinamismo do acontecimento.

    Se desde o primeiro momento entendermos que a xícara foi dividida em oitavos. Os 3/4 são exatamente equivalentes a 6/8 da xícara. E pegarmos somente metade de uma receita de 6/8 da xícara, é exatamente pegarmos 3/8 da capacidade da xícara.
    (1 voto)
    Avatar Default Khan Academy avatar do usuário
  • Avatar primosaur tree style do usuário André Peres
    Obrigado Fundação Lemann e Khan Academy!
    (1 voto)
    Avatar Default Khan Academy avatar do usuário
  • Avatar piceratops seed style do usuário Julia Monteiro
    Muito boa explicação, podemos perceber que da uma introdução a divisão de frações também !! :)
    (1 voto)
    Avatar Default Khan Academy avatar do usuário
  • Avatar piceratops ultimate style do usuário luan santos
    eu entendi, mas no final começa a ficar muito confuso com esses desenhos!
    (1 voto)
    Avatar Default Khan Academy avatar do usuário
  • Avatar female robot amelia style do usuário jeffersonyago.1110
    nao ;-; 1 e igual a 2
    (1 voto)
    Avatar Default Khan Academy avatar do usuário
  • Avatar ohnoes default style do usuário Gabriel
    vish kkk, to andando com as penas bambas, mas to entendendo.
    (1 voto)
    Avatar Default Khan Academy avatar do usuário
Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.

Transcrição de vídeo

RKA - Uma receita de muffins de banana e aveia leva 3/4 de xícara de aveia em flocos. Você está preparando 1/2 receita. Quanto de aveia deve usar? Se a receita leva 3/4 de uma xícara e você está fazendo 1/2 receita, então precisa de metade de 3/4, correto? Você precisa de metade da quantidade de aveia em flocos da receita completa. Então, você precisa de 1/2 de 3/4. Para isso, multiplique 1/2 vezes 3/4 que é o mesmo que multiplicar os numeradores. 1 vezes 3 é 3, 2 vezes 4 é 8, está feito! Você precisa de 3/8. Precisa de 3/8 de uma xícara de aveia em flocos. Vamos visualizar um pouco mais para fazer sentido. Vou desenhar uma coisa que parece com 3/4 ou, simplesmente, quanta aveia precisaria em uma situação normal, como se você fosse fazer a receita inteira. Eu vou desenhar, digamos que isso representa a xícara inteira, e se dividirmos em quartos, vou fazer um pouquinho melhor. Então, se dividirmos em quartos, 3/4 vai representar 3 desses aqui. Então, representaria 1, 2, 3, ou, aquele tanto de aveia. Agora, você vai precisar de metade da receita, então, simplesmente dá para dividir isso ao meio, vou fazer isso com uma outra cor. Normalmente, usaria essa quantidade de aveia em laranja mas vamos preparar metade da receita, então, vai precisar de metade da quantidade de aveia, logo, você quer esse tanto de aveia. Agora, vamos pensar no que é isso em relação a uma xícara inteira. Um jeito de fazer é transformar cada um desses quatro potes, ou, desses quatro pedaços, ou dessas quatro partes de uma xícara em 8 partes de uma xícara. Vamos ver o que acontece quando isso é feito. Estamos transformando cada pedaço, cada quarto em 2 pedaços. Vamos dividir cada um deles em 2, então, esse é o primeiro pedaço. O primeiro pedaço vamos dividir em 2, aqui e ali, portanto, agora são 2 pedaços. Esse é o segundo pedaço, o dividimos em 1, e depois em 2 pedaços. Aqui é o terceiro pedaço, portanto, o dividimos em 1, 2 pedaços. Este é o quarto pedaço, ou a quarta parte, e o dividimos em 2 partes. Quanto é isso como uma fração do todo? Temos 8 pedaços agora, certo? 1, 2, 3, 4, 5, 6, 7 e 8, porque transformamos cada um dos quartos e os dividimos em 8, então, temos 8 como denominador e tiramos metade dos 3/4, certo? Lembre-se 3/4 estava em laranja, quero deixar muito claro porque esse desenho pode causar uma confusão. Isso era 3/4, então, aquilo é 3/4, essa área em roxo, essa área com a cor roxa é a metade dos 3/4. Mas, vamos pensar nela em termos de oitavos. Quantas dessas partes de 8 é ela? Tem uma parte de 8 aqui, 2 partes de 8 ali, 3 partes de 8 ali, então, é 3/8. Tomara que faça sentido, ou te dê a sensação mais concreta do que significa ter metade de 3/4.