If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal

Como contar unidades quadradas para encontrar a fórmula da área

Neste vídeo, usamos unidades quadradas para mostrar por que a multiplicação dos comprimentos dos lados também pode ser usada para encontrar a área de retângulos.    Versão original criada por Sal Khan.

Quer participar da conversa?

  • Avatar duskpin sapling style do usuário Rhayssa toquio
    manoo alguem entendeu?
    (4 votos)
    Avatar Default Khan Academy avatar do usuário
    • Avatar hopper cool style do usuário Lucas Gomes
      Sim Rhayssa! Qual é a sua dúvida?
      Você basicamente tem que multiplicar o comprimento pela largura. Esse cálculo basicamente determina quantos quadrados pequenos vão caber em um quadrado maior.
      (7 votos)
  • Avatar blobby green style do usuário 00001092776977sp
    nao entendi professora
    (2 votos)
    Avatar Default Khan Academy avatar do usuário
  • Avatar aqualine ultimate style do usuário pyetrosilva.2510
    Salve alguem entendeu
    (2 votos)
    Avatar Default Khan Academy avatar do usuário
    • Avatar blobby blue style do usuário Gustavo Farina
      Olá! No vídeo, é apresentado o conceito de que, em retângulos (todas as figuras de quatro lados cujos ângulos são obrigatoriamente retos), se você multiplicar o comprimento pela largura, obterá o número de unidades quadradas da área da figura. Com prática, esse conceito vai se tornar natural e será básica e essencial para compreender como calcular a área de outras figuras de quatro lados. Espero ter ajudado :)
      (1 voto)
  • Avatar blobby green style do usuário elias.felisberto
    nao entendi prr nenhuma
    (0 votos)
    Avatar Default Khan Academy avatar do usuário
Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.

Transcrição de vídeo

RKA13MB - Tenho 3 retângulos aqui e também tenho as dimensões desses retângulos: a altura e a largura. Já esse aqui tem altura e largura iguais; então, na verdade, ele é um quadrado. Vamos pensar sobre quanto espaço cada um ocupa na minha tela. Já que estamos fazendo tudo em metros, já que todas as dimensões estão em metros, vou medir a área em metros quadrados. Vamos ver quantos metros quadrados consigo encaixar nesse retângulo amarelo sem sair do limite e sem sobreposição; consigo encaixar 1 metro quadrado. Lembre-se: 1 metro quadrado é um quadrado que tem comprimento de 1 metro e largura de 1 metro. Isso é 1 metro quadrado, 2, 3, 4, 5, e 6 metros quadrados. Aqui, a área é de 6 metros quadrados. A área é igual a 6 metros quadrados. Talvez já tenha percebido alguma coisa. Realmente precisei contar 1, 2, 3, 4, 5, 6? Você pode ter percebido que poderia visualizar como 2 grupos de 3. Para deixar bem claro: por exemplo, posso visualizar este aqui como um grupo de 3, e, depois, mais um grupo de 3. Mas como cheguei em grupos de 3? Isso acontece porque a largura aqui é de 3 metros, posso colocar 3 metros quadrados um do lado do outro. Como consegui 2 grupos? Bom, são 2 metros. Aqui temos um comprimento de 2 metros. Poderia ter contado essas 6 coisas, mas também poderia ter dito que tem um comprimento de 2 metros. Tenho 2 grupos de 3. Posso multiplicar 2 vezes 3 (2 dos meus grupos de 3) e teria chegado em 6. Mas pode pensar em 1 minuto. É só uma coincidência que, se eu pegar o comprimento e multiplicar pela largura, chego ao mesmo valor da sua área? Não, não é. Porque, quando pegou os comprimentos, disse: "bom, tenho quantas linhas?". Daí, você multiplica isso pela largura e diz: "bom, quantos desses metros quadrados consigo colocar em uma linha?". Esta é uma forma muito rápida de contar quantos desses metros quadrados têm. Dá para falar que 2 metros multiplicado por 3 metros é igual a 6 metros quadrados. Mas também dá para falar: "ei, não tenho certeza de que esta regra sempre se aplique". Vamos ver se ela se aplica a esses outros retângulos aqui. Considerando o que acabamos de ver, vamos pegar o comprimento de 4 metros e multiplicar pela largura, ou seja, multiplicar por 2 metros. Bom, 4 vezes 2 dá 8. Deveria dar 8 metros quadrados. Vejamos se este é realmente o caso: 1, 2, 3, 4, 5... (e você pode ver que está indo bem na direção certa)... 6, 7 e 8. A área desse retângulo é realmente de 8 metros quadrados, e você poderia considerar isso como 4 grupos de 2. Pode contar literalmente como 4 grupos de 2. Daí que vem o 4 vezes 2. Dá para considerar como 4 grupos de 2 assim, ou considerar como 2 grupos de 4. 1 grupo de 4 bem aqui. Pode considerar que isso é 2 vezes 4. E, depois, 2 grupos de 4 (vou melhorar isso aqui). Provavelmente, pode determinar qual é a área deste retângulo. Na verdade, é um quadrado porque tem o mesmo comprimento e a mesma largura. Multiplicamos o comprimento (3 metros) vezes a largura (vezes 3 metros), para termos 3 vezes 3, que dá 9. São 9 metros quadrados. Vamos verificar de novo só para tranquilizar. Multiplicando as dimensões desses retângulos, a gente tem: 1, 2, 3, 4, 5, 6, 7, 8 e 9. Então, confere. Determinamos com quantos metros quadrados a gente cobre aqui sem sobreposição nem passar dos limites. Dá para chegar ao mesmo resultado se multiplicar 3 vezes 3, se multiplicarmos o comprimento vezes a largura em metros.