Conteúdo principal
Tempo atual:0:00Duração total:1:20

Transcrição de vídeo

na circunferência o ponto b é o centro e os pontos a ce e de pertencem à circunferência se o ângulo abc vale cento e 32 graus então aqui há 132 graus quanto vale o ângulo a descer 1 chamar esse ângulo de alva essa relação nós vamos usar muito como é que chegamos nesse valor vamos chamar esse ângulo de ao fã e esse ângulo de beta 1 vamos chegar a uma conclusão levando em consideração esses dois ângulos o que é válido para esses outros dois anos também com aqui temos um raio bd é um raio e bea é um raio significa que esse triângulo a db1 triângulo isósceles e esse ângulo também ao fã cerciag elfaa um esse aqui também rafah 11 ea soma dos ângulos internos de um triângulo é 180 graus ou seja esse ângulo 180 - alpha 1 - ao menos duas vezes ao fã esse outro ângulo é 180 gramas ou seja o b1 vai ser igual a 180 graus - esse ângulo aqui menos 180 - 2 alpha 1 ou seja b1 vai ser igual a 180 c 180 011 então alfa um é igual a b1 sobre dois ou seja o ângulo escrito nas referência como nós podemos provar pra esse lado também vamos chamar esse ângulo escrito aqui de alfa e esse ângulo aqui central de beta a relação vai se manter na mesma proporção ou seja a alfa é igual a beta sobre dois significa que o ângulo escrito alfa é metade do ângulo central vamos voltar ao nosso problema o ângulo alfa é o ângulo escrito onde tem o arco a ser comum a ele e ao ângulo central portanto o valor de alves será 132 que o valor do ângulo central / 2 alfa igual a 66 grãos