Conteúdo principal
Pré-cálculo
Curso: Pré-cálculo > Unidade 2
Lição 10: Uso de identidades trigonométricas- Cálculo de valores trigonométricos a partir de identidades de soma de ângulos
- Uso da identidade da tangente da soma de ângulos
- Calcule valores trigonométricos a partir de identidades de soma de ângulos
- Uso de identidades trigonométricas de soma de ângulos: cálculo das medidas dos lados
- Uso de identidades trigonométricas de soma de ângulos: manipulação de expressões
- Uso de identidades trigonométricas
- Referência de identidade trigonométrica
© 2023 Khan AcademyTermos de usoPolítica de privacidadeAviso de cookies
Uso de identidades trigonométricas de soma de ângulos: manipulação de expressões
Neste vídeo, temos que cos(2θ)=C e usamos a identidade do cosseno do dobro do ângulo para encontrar uma expressão para sen(θ). Versão original criada por Sal Khan.
Quer participar da conversa?
- A resposta parece estar errada, porque sqrt(1-c)/2 deu o 2 fora do radical...(3 votos)
- O parêntese ta servindo para indicar que o numerador da fração é 1 - c, não para mostrar a quais números aplicamos a radiciação. Se não tivesse o parênteses, ficaria parecendo que o numerador era somente o "-c".
Obs: Normalmente, também teríamos que colocar um parentes ou colchete para indicar a quais números o radical está sendo aplicado, porém comentei apenas sobre o parentes que aparece na resposta.(1 voto)
Transcrição de vídeo
RKA - Cosseno de 2 teta (θ) é igual a "C".
E θ é um ângulo que está entre zero e pi (π). O que eu quero é escrever uma fórmula
para seno de θ em função de C. Antes de nós trabalharmos com este exercício,
proponho que você pause o vídeo e tente fazer sozinho. Bom, supondo que você já fez isso,
vamos ver o que a gente pode fazer aqui. Então olha só, eu cortei
o enunciado da pergunta, colei bem aqui e agora a gente vai trabalhar aqui
para poder resolver este exercício, né? Bom, primeiro diz que cosseno de θ = C, eu vou escrever isso primeiro de tudo,
que C = cosseno de 2θ. A gente sabe qual é a soma do cosseno de dois ângulos, por exemplo, o cosseno de alfa + beta (α + β). O cosseno de α + β, né? O que eu posso dizer? Eu sei que cosseno de α + β,
cosseno de dois ângulos, é igual ao cos.α vezes cos.β - o sen.α vezes sen.β. Esta é a fórmula que a gente já estudou
em relação ao cosseno da soma de dois ângulos, né? Cosseno de α + β:
cos.α vezes cos.β - sen.α vezes sen.β. E aí por que esta identidade
seria útil para a gente aqui? Bom, talvez porque eu consiga escrever
2θ como sendo θ + θ. E aí eu vou escrever tudo isto
em função de cosseno e seno, depois eu escrevo cosseno em função de seno,
e todo mundo em função de seno. Vamos tentar, então, né? Eu posso escrever como sendo
cosseno de (θ + θ), então este é igual a cosseno de (θ + θ). Obviamente que isso
é a mesma coisa que cosseno de 2θ. Aí, cosseno de (θ + θ),
eu posso escrever como sendo: cos.θ vezes cos.θ - sen.θ vezes sen.θ. Foi o que a gente viu na identidade aqui em cima, né? Vezes seno de θ. Cos.θ vezes cos.θ = cos².θ menos... sen.θ vezes sen.θ,
eu sei que é sen².θ. Bom, então a gente já conseguiu escrever
cosseno de 2θ em função de cosseno e seno. Agora eu quero passar todo mundo para seno. Vamos ver o que eu posso fazer. O que pode facilitar nossa vida
é reescrever cos².θ através da identidade pitagórica
que a gente já estudou, lembra? A identidade pitagórica diz
que cos².θ + sen²θ = 1. A gente pode subtrair sen².θ
de ambos os membros desta equação aqui. E aí a gente vai ter que: cos².θ = 1 - sen².θ. E podemos colocar isto aqui
em relação ao cos².θ. Podemos dizer que cos².θ = 1 - sen².θ, tudo isto menos o sen².θ,
que já está ali, continuação da identidade que a gente achou. Isto tudo, a gente tem
que lembrar que é igual a C. Então C, eu posso dizer que é igual a 1, e aí "- sen².θ - sen².θ", a gente pode dizer que é
"- 2 vezes sen².θ". E desta relação aqui,
a gente tem que tirar o valor de seno de θ. Vamos multiplicar por - 1 os dois lados da equação
para mudar a ordem disto aqui. Então a gente fica que - C = 2 sen².θ - 1. Bem, isto é o que temos
quando multiplicamos por - 1. Vamos agora somar 1 a ambos os lados aqui. Então teremos que:
1 - C = 2 sen².θ. E se dividirmos ambos os lados por 2,
a gente consegue ver o valor de seno de θ. Se sen².θ = (1 - C) sobre 2, podemos dizer que seno de θ é igual
a mais ou menos a raiz quadrada de (1 - C) sobre 2. Agora, o que queremos saber é: será que ambos os sinais vão servir
para este problema? Será que nosso seno de θ
vai ser só positivo ou só negativo? Será que no próprio enunciado
ele já não deixou informações suficientes para que a gente escolha
um dos sinais ou ambos os sinais? Então eu proponho que você observe as informações
dadas pelo exercício e tente fazer sozinho. Supondo que você tenha feito isso, o que a gente sabe é que o ângulo θ
é um ângulo que está entre zero e π. Então relembrando o nosso círculo unitário,
o ângulo zero vai ser este ângulo bem aqui da direita, e o ângulo π é todo este contorno até aqui,
até aqui o ângulo π. Se ele está aqui, com certeza o nosso ângulo θ é um ângulo que pode estar
no primeiro ou no segundo quadrante. Então poderia ser este, poderia ser este,
um tipo como este não poderia ser, né? Então a gente sabe que, certamente,
ele vai ser um ângulo θ, que vai estar aqui, e o seno de qualquer deste ângulo
que esteja no primeiro ou no segundo quadrante está sobre a coordenada "y",
ou seja, ele é positivo. Se é positivo, podemos dizer
que o seno de θ vai ter um valor positivo, vai ser igual a raiz positiva
ou "+ a raiz quadrada de (1 - C) sobre 2". E agora sabendo que o valor de seno de θ
é o valor positivo da raiz quadrada de (1 - C) sobre 2, vamos voltar na plataforma para responder
nossa pergunta. Então vamos lá digitar nossa resposta, lembrando que na raiz, ele pede para digitar
o símbolo "sqrt", então nosso seno de θ vale: raiz quadrada de (1 - C),
tudo isso sobre 2. Vamos verificar nossa resposta. Correta. Até o próximo vídeo.