If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal
Tempo atual:0:00Duração total:6:37

Relação entre múltiplos de um número natural e seus restos | Parte II

Transcrição de vídeo

RKA - Olá meu amigo ou minha amiga, tudo bem com você? Na aula passada, nós conversamos sobre as sequências numéricas, e eu mostrei para você um exemplo da sequência formada pelos múltiplos de 3. Quando temos uma sequência formada pelos múltiplos de um número, todas as vezes que dividimos os termos da sequência pelo número que originou a sequência, vamos encontrar o resto das divisões sempre igual a zero. Mas o que acontece quando tivermos uma sequência que não é formada por múltiplos de um número que originou a sequência? Ainda assim, teremos uma regularidade nessa sequência? E se tiver, como podemos identificar a regularidade? Bem, vamos observar a seguinte sequência aqui, agora: eu vou colocar aqui 3, 5, 7, 9, 11, 13, 15... e assim por diante. Essa é a sequência dos números ímpares maiores que 3. Se a gente dividir cada um dos termos por 3, vamos encontrar um resto igual a zero? Acho que não. Mas vamos fazer isso aqui do lado? Vamos começar pelo 3, vamos dividir 3 por 3. 3 dividido por 3 é igual a 1. Para encontrar o resto, a gente pega 1 e multiplica com 3. 1 vezes 3 é igual a 3, e aí a gente subtrai 3 com 3, 3 menos 3 é igual a zero, ou seja, esse primeiro termo, aqui, nós temos um resto igual a zero. Mas será que o mesmo se aplica com os outros termos? Bem, vamos fazer aqui para saber sobre isso. Vamos fazer o mesmo aqui com o segundo termo, ou seja, com o 5. Vamos dividir o 5 por 3. 5 dividido por 3 é igual a 1, 1 vezes 3 é igual a 3. 5 menos 3 é igual a 2, ou seja, temos um resto igual a 2. Vamos fazer agora com o terceiro termo, que é o 7. Dividindo 7 por 3, nós temos um valor igual a quanto? 7 dividido por 3 é igual a 2. 2 vezes 3 é igual a 6, subtraindo 7 com 6, nós temos um valor igual a 1, ou seja, temos um resto igual a 1. Vamos fazer agora a divisão aqui com o quarto termo, que é o 9. Dividindo 9 por 3, nós temos quanto? 9 dividido por 3 é igual a 3. Para encontrar o resto, a gente multiplica o 3 com o 3, que é igual a 9, aí, a gente coloca o 9 aqui. 9 menos 9 é igual a zero, ou seja, temos um resto igual a zero. Vamos fazer o mesmo com o quinto termo, que é o 11. Dividindo 11 por 3, nós temos um valor igual a quanto? Igual a 3. Para encontrar o resto, a gente vai multiplicar o 3 com o 3. 3 vezes 3 é igual a 9, a gente coloca o 9 aqui, e subtrai 11 com 9, 11 menos 9 é igual a 2, ou seja, temos um resto igual a 2. Agora, fazendo o mesmo aqui com o sexto termo, que é o 13. Dividindo 13 por 3, vamos ter um valor igual a quanto? 13 dividido por 3 é igual a 4. Para encontrar o resto aqui dessa divisão, a gente multiplica o 4 com o 3, que é igual a 12. aí a gente subtrai o 13 com 12, 13 menos 12 é igual a 1, ou seja, temos um resto é igual a 1. Vamos fazer o mesmo aqui agora com o sétimo termo, ou seja, com 15. Dividindo 15 por 3, nós temos um valor igual a 5. Para encontrar o resto, a gente multiplica o 5 com 3, 5 vezes 3 é igual a 15, e aí subtrai o 15 com 15, 15 menos 15 é igual a zero, ou seja, temos um resto igual a zero. Bem, já fizemos a divisão de todos os termos aqui por 3, certo? E percebermos que nem todos os restos são iguais a zero. Mas, apesar dos restos não serem iguais a zero, será que existe uma regularidade com os restos das divisões? Bem, a gente já viu que existe uma certa regularidade com a sequência, já que é uma sequência dos números ímpares maiores que 3. Mas, repare que também existe uma regularidade, aqui, com os restos das divisões. Observe que o resto da divisão do primeiro termo com 3 é igual a zero, o resto da divisão do segundo termo com 3 é igual a 2, o resto da divisão do terceiro termo com 3 é igual a 1, o resto da divisão do quarto termo com 3 é igual a zero, o resto da divisão do quinto termo com 3 é igual a 2, o resto da divisão do sexto termo com 3 é igual a 1, e o resto da divisão do sétimo termo com 3 é igual a zero. Ou seja, temos uma certa regularidade com o resto das divisões aqui realizadas com os termos da sequência, com o número 3. Repare que a nossa regularidade, aqui, é formada pelos números 0, 2, 1, 0, 2, 1, 0, e assim por diante. Resumindo, repare que sempre que a gente estiver observando uma sequência, é legal a gente sempre dividir os termos dessa sequência pelo número que originou a sequência. Assim, a gente consegue encontrar uma possível regularidade entre os termos da sequência, e também entre os restos da divisão dos termos pelo número que originou a sequência. Então, é isso aí, meu amigo ou minha amiga. Eu espero que você tenha compreendido tudo direitinho, e aproveitando, quero deixar aqui para você um grande abraço, e até a próxima!