Conteúdo principal
Tempo atual:0:00Duração total:4:25

Conversão de uma fração em uma dízima periódica

Transcrição de vídeo

expresse o número racional 19 sobre 27 ou 1927 avos como um destino ao terminal 1 desse mal que eventualmente se repete inclua apenas os seis primeiros dígitos do desse mal na sua resposta a gente quer expressar 19 sobre 27 que é igual a 19 / 27 comum desse mal então vamos dividir 19 / 27 vai envolver alguns desse mais porque 27 é maior que 19 e não dividir perfeitamente vamos começar 27 por um não cabem 19 e kadú em 190 e parece que 27 é quase 30 nem um pouco menos que 30 trinta vezes 6 seria 180 então vamos com estes seis vezes vamos ver se funciona bem seis vezes 7 e 42 seis vezes dois é 12 + 4 16 quando subtraiu 190 - 162 na verdade a gente poderia ter outro 27 porque quando subtraímos tem 10 da casa dos 10 então isso se torna 8 10 isso se torna 28 daria para ter colocado mais 1 27 aqui vamos colocar mais um 27 assim 7 27 avos 7 17 49 7 vezes 2 14 + 4 18 e agora nosso um restante da prova achar outro 0 27 cabe em 10 0 vezes 10 vezes 27/10 subtraiu com o resto de 10 mas agora temos que baixar outro 0 agora vinte e sete cabines em três vezes três vezes 27 é 60 mais 21 é 81 81 13 meses 7 é 21 tem 81 depois quando subtrairmos em -81 poderia tomar sem da casa do 100º c fazer dez décimos e depois pegaram daqueles décimos da casa dos demais e fazer dele 10 unidades então nove décimos menos oito décimos é igual a 110 e 10 - 19 portanto é igual a 19 daria para fazer de cabeça depois tem vejo algo interessante porque baixamos nosso próximo zero ea gente vê 190 de novo a gente viu 190 que em cima mas vamos continuar então 27 cabe em 19 vi já brincamos disso antes cabineiros sete vezes sete vezes 27 descobrimos que era 189 subtraímos tinha um restante depois trouxemos outros 10 dissemos que 27 cabem 10 0 vezes eram vezes 27 e 0 subtraiu depois continua com dez mas tem que baixar outro zero tem 27 cabem 100 já fizemos três vezes vê algo acontecendo aqui 10.703 703 vamos continuar repetindo 703 vai ser igual a zero ponto 7 037 037 037 037 em parar pra sempre a notação para representar um decimal repetido como este é dizer que este é zero ponto 703 e coloca uma barra sobre a parte que vai repetir na e coloca uma barra sobre os 7 10 e 13 isso significa que os 703 vão continuar se repetindo sem parar então vamos realmente inserir no exercício agora 10.703 703 e dizem para incluir apenas os seis primeiros dígitos do desse mal na resposta nos dizem para arredondar o aproximar porque obviamente se disserem para arredondar para o menor na sexta casa decimal então a redonda pra cima porque o próximo dia 17 mas não pediram para arredondar esse para incluir os seis primeiros dígitos decimais na sua resposta portanto isso deve servir