If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal

Descoberta da estrutura do DNA

A estrutura de dupla hélice do DNA e como foi descoberta. Chargaff, Watson e Crick, e Wilkins e Franklin.

Introdução

Hoje, a dupla hélice de DNA é provavelmente a mais icônica de todas as moléculas biológicas. Inspirou escadas, decorações, pontes de pedestres (como a de Singapura, mostrada abaixo), e mais.
Tenho que concordar com os arquitetos e designers: a dupla hélice é uma estrutura linda, e sua forma se encaixa com sua função de forma notável. Mas a dupla hélice nem sempre foi parte do léxico cultural. Na verdade, até meados da década de 1950, a estrutura do DNA era um mistério.
Fotografia de uma ponte em Singapura projetada para se parecer com a dupla hélice do DNA.
Crédito de imagem: "Ponte da dupla hélice," by William Cho, CC BY-SA 2.0
Neste artigo, vamos brevemente explorar como a estrutura de dupla hélice do DNA foi descoberta através do trabalho de James Watson, Francis Crick, Rosalind Franklin, e outros pesquisadores. Então, veremos as propriedades da dupla hélice.

Os componentes do DNA

Por conta do trabalho do bioquímico Phoebus Levene e outros, os cientistas na época de Watson e Crick sabiam que o DNA era composto de subunidades chamadas nucleotídeos1. Um nucleotídeo é feito de um açúcar (desoxirribose), um grupo fosfato, e uma das quatro bases nitrogenadas: adenina (A), timina (T), guanina (G) ou citosina (C).
As bases C e T, que têm apenas um anel, são chamadas de piridiminas, enquanto as bases A e G, que têm dois aneis, são chamadas de purinas.
Painel da esquerda: estrutura de um nucleotídeo de DNA. O açúcar desoxirribose liga-se a um grupo fosfato e a uma base nitrogenada. A base pode ser qualquer uma das quatro opções: citosina (C), timina (T), adenina (A) e guanina (G). As quatro bases têm diferenças em suas estruturas e grupos funcionais. Citosina e timina são pirimidinas e têm apenas um anel em suas estruturas químicas. Adenina e guanina são purinas e têm dois anéis em suas estruturas.
Painel da direita: uma fita de nucleotídeos de DNA ligados entre si. Os açúcares se conectam por ligações fosfodiéster. Uma ligação fosfodiéster consiste de um grupo fosfato no qual dois átomos de oxigênio ligam-se a outros átomos - neste caso, a átomos de carbono dos açúcares desoxirribose vizinhos. A fita de DNA consiste de grupos de fosfato e açúcares desoxirribose alternados (coluna dorsal açúcar-fosfato), com as bases nitrogenadas ligadas nos açúcares desoxirribose.
Crédito das imagens: painel esquerdo, imagem modificada de "Nucleic acids: Figure 1," por OpenStax College, Biology (CC BY 3.0). Painel direito, imagem modificada de "DNA chemical structure," por Madeleine Price Ball (CC0/public domain).
Os nucleotídeos de DNA se reúnem em cadeias ligadas por ligações covalentes, que se formam entre o açúcar desoxirribose de um nucleotídeo e o grupo fosfato do próximo. Esse arranjo faz uma cadeia alternada de grupos fosfato e de açúcar desoxirribose no polímero DNA, uma estrutura conhecida como esqueleto de açúcar-fosfato

Regras de Chargaff

Outra informação chave relacionada à estrutura de DNA veio do bioquímico austríaco Erwin Chagaff. Chargaff analisou o DNA de diferentes espécies, determinando sua composição de bases A, T, C e G. Ele fez várias observações fundamentais:
  • A, T, C e G não eram encontradas em quantidades iguais (como alguns modelos da época diziam)
  • As quantidades de bases variavam entre as espécies, mas não entre indivíduos da mesma espécie
  • A quantidade de A sempre igualava a quantidade de T, e a quantidade de C sempre igualava a quantidade de G (A = T e G = C)
Esses resultados, chamados de regras de Chargaff, acabaram sendo cruciais para o modelo de Watson e Crick da dupla hélice de DNA.

Watson, Crick e Rosalind Franklin

No início dos anos de 1950, o biólogo americano James Watson e o físico britânico Francis Crick elaboraram seu famoso modelo da dupla hélice de DNA. Eles foram os primeiros a cruzar a linha de chegada nessa "corrida" científica, com outros como Linus Pauling (que descobriu a estrutura secundária da proteína) também tentando encontrar o modelo correto.
Em vez de fazer novos experimentos no laboratório, Watson e Crick coletaram e analisaram conjuntos de dados já existentes, organizando-os de formas novas e esclarecedoras2. Algumas de suas pistas mais cruciais sobre a estrutura do DNA vieram de Rosalind Franklin, uma química que trabalhava no laboratório do físico Maurice Wilkins.
Franklin era uma especialista em uma técnica poderosa para determinar a estrutura das moléculas, conhecida como cristalografia de raios-x. Quando a forma cristalizada de uma molécula como o DNA é exposta a raios-x, alguns dos raios são defletidos pelos átomos no cristal, formando um padrão de difração que dá pistas sobre a estrutura da molécula.
Imagem do DNA por difração de raio X. O padrão de difração tem uma forma de X que representa a estrutura em dupla hélice do DNA.
Imagem modificada de "Estrutura e sequenciamento do DNA: Figura 2," by OpenStax College, Biology (CC BY 3.0)
A cristalografia de Franklin deu a Watson e Crick pistas importantes para a estrutura do DNA. Algumas vieram da famosa "imagem 51", uma imagem de raio-x de difração do DNA notavelmente clara e impressionante produzida por Franklin e seus estudantes de graduação (um exemplo moderno do padrão de difração produzido pelo DNA é mostrado abaixo). Para Watson, o padrão de difração em formato de X da imagem de Franklin imediatamente sugeriu uma estrutura helicoidal, de duas fitas para o DNA3.
Watson e Crick juntaram dados de um número de pesquisadores (incluindo Franklin, Wilkins, Chargaff e outros) para montar seu celebrado modelo da estrutura de DNA em 3D. Em 1962, James Watson, Francis Crick e Maurice Wilkins foram premiados com o prêmio Nobel de medicina. Infelizmente, a essa altura Franklin já havia morrido, e os prêmios Nobel não são concedidos a título póstumo.

O modelo do DNA de Watson e Crick

A estrutura do DNA, como representada no modelo de Watson e Crick, é uma hélice de dupla fita, antiparalela, para a direita. Os esqueletos de açúcar-fosfato das fitas de DNA constituem o exterior da hélice, enquanto as bases nitrogenadas são encontradas no interior e formam pares ligados por ligações de hidrogênio que mantêm as fitas de DNA juntas.
No modelo abaixo, os átomos laranja e vermelho marcam os fosfatos dos esqueletos de açúcar-fosfato, enquanto os átomos azuis no interior da hélice pertencem às bases nitrogenadas.
Animação da estrutura molecular 3D da dupla hélice de DNA.
Crédito de imagem: "Bdna cortado," por Jahobr, domínio público.

Orientação antiparalela

O DNA de fita dupla é uma molécula antiparalela, ou seja, é composta de duas fitas que correm lado a lado mas apontam para direções opostas. Em uma molécula de DNA de fita dupla, a extremidade 5' (com fostato livre) de uma fita se alinha com a extremidade 3' (com hidroxila livre) de sua parceira, e vice-versa.
Painel esquerdo: ilustração da estrutura antiparalela do DNA. Um curto segmento de dupla-hélice do DNA é mostrado, composto por duas fitas de DNA unidas por ligações de hidrogênio entre as bases. A fita da esquerda tem um grupo fosfato exposto em seu topo (extremidade 5') e um grupo hidroxila em sua parte inferior (extremidade 3'). A fita da direita tem a orientação oposta, com um grupo fosfato exposto em sua parte inferior (extremidade 5') e uma hidroxila em seu topo (extremidade 3'). A extremidade 5' de uma fita, portanto, acaba ao lado da extremidade 3' da outra, e vice-versa.
Painel direito: estrutura de um nucleotídeo, ilustrando o grupo fosfato 5' e um grupo hidroxila 3'. Esses grupos recebem seus nomes devido às suas posições no anel do açúcar desoxirribose. Os carbonos do anel são identificados de 1' (o carbono que carrega a base nitrogenada) até 5' (o carbono que carrega o grupo fosfato). O carbono 3' no meio carrega o grupo hidroxila.
_Imagem modificada de "DNA chemical structure," por Madeleine Price Ball (CC0/domínio público)._

Hélice dextrógira

No modelo de Watson e Crick, as duas fitas de DNA enrolam-se uma em volta da outra para formar uma hélice dextrógira. Todas as hélices têm uma direção, que é uma propriedade que descreve como seus filamentos são orientados no espaço.
Imagem de uma dupla hélice de DNA ilustrando sua estrutura dextrógira. O sulco maior é a lacuna mais ampla que as espirais fazem no comprimento da molécula, enquanto o sulco menor é o sulco que acompanha em paralelo o sulco maior. Os pares de bases encontram-se no centro da hélice, enquanto a estrutura de açúcar fosfato situa-se no exterior.
_Imagem modificada da "DNA structure and sequencing: Figura 3," por OpenStax College, Biology (CC BY 3.0)._
A torção da dupla fita de DNA e a geometria das bases criam um vão maior (chamado de sulco maior) e um vão menor (chamado de sulco menor) que estão ao longo do comprimento da molécula, como mostrado na figura acima. Esses sulcos são importantes locais de ligação para proteínas que mantêm o DNA e regulam a atividade dos genes.

Pareamento de bases

No modelo de Watson e Crick, as duas fitas da dupla hélice de DNA são mantidas juntas por ligações de hidrogênio entre as bases nitrogenadas nas fitas opostas. Cada par de bases fica plano, formando um "degrau" da escada da molécula de DNA.
Pares de base não são feitos de qualquer combinação de bases. Em vez disso, se há um A em uma fita, ele deve ser pareado com um T na outra (e vice-versa). Similarmente, um G encontrado em uma fita, deve sempre ter um C como parceiro na fita oposta. Essas associações A-T e G-C são conhecidas como pares de base complementares.
Diagrama ilustrando o pareamento das bases entre A-T e G-C. A e T se opõe uma à outra nos dois filamentos da hélice e seus grupos funcionais formam duas pontes de hidrogênio que mantém os filamentos juntos. Da mesma forma , G e C se opõem uma à outra nos dois filamentos e seus grupos funcionais formam três pontes de hidrogênio que mantém os filamentos juntos.
_Imagem modificada da "DNA structure and sequencing: Figura 3," por OpenStax College, Biology (CC BY 3.0)._
O pareamento de bases explica as regras de Chargaff, ou seja, porque a composição de A é sempre igual a de T, e a composição de C se iguala a de GG11. Onde há um A em uma fita, deve haver um T na outra, e o mesmo é verdade para G e C. Porque uma grande purina (A ou G) é sempre pareada com uma pequena piridimina (T ou C), o diâmetro da hélice é uniforme, chegando a cerca de 2 nanômetros.
Apesar do modelo original de Watson e Crick propor que haveriam duas ligações de hidrogênio entre as bases de cada par, sabemos hoje que G e C formam uma ligação adicional (de forma que os pares A-T formam duas ligações de hidrogênio, enquanto pares G-C formam três)12.

O impacto da dupla hélice

A estrutura do DNA abriu a porta para a compreensão de muitos aspectos da função do DNA, como saber como ele é copiado e como a informação que carrega é usada pela célula para fazer proteínas.
Assim como veremos nos próximos artigos e vídeos, o modelo de Watson e Crick inaugurou uma nova era de descobertas em biologia molecular. O modelo e as descobertas que ele permitiu formam os fundamentos da maioria das pesquisas de ponta em biologia e biomedicina atualmente.

Explore além da Khan Academy

Você quer aprender mais sobra a escada do DNA? Confira esta atividade interativa (em inglês) do LabXchange.
LabXchange é uma plataforma on-line gratuita de educação científica criada na Faculdade de Artes e Ciências de Harvard e apoiada pela Fundação Amgen.

Quer participar da conversa?

Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.