If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal

Elementos ideais e fontes

Modelos ideais do resistor, capacitor e indutor.  Fontes ideais de tensão e corrente. Escrito por Willy McAllister.
Um circuito elétrico é feito de elementos. Elementos incluem pelo menos uma fonte. A fonte é conectada a uma gama de componentes. Nós iremos descrever as fontes e componentes com abstrações matemáticas ideais. No fim deste artigo, teremos uma ótima coleção de equações, que podem ser combinadas para gerar várias funções eletrônicas úteis. O próximo artigo descreve componentes do mundo real que se aproximam das abstrações ideais que definimos aqui.
Elementos podem ser tanto fontes quanto componentes.
Fontes fornecem energia para um circuito. Há dois tipos básicos.
  • Fonte de tensão
  • Fonte de corrente
Componentes aparecem em três tipos básicos, cada um caracterizado por uma diferente relação de tensão-corrente.
  • Resistor
  • Capacitor
  • Indutor
Estas fontes e componentes possuem dois terminais ou pontos de conexão. Não surpreendentemente, eles são referidos como elementos de 2 terminais.

Fontes ideais

Fonte de tensão constante

Uma fonte ideal de tensão constante possui uma tensão de saída fixa, independente da corrente absorvida pelos componentes conectados aos seus terminais, como mostrado neste gráfico corrente versus tensão:
A equação para uma fonte de tensão constante é,
v, equals, start text, V, end text
onde start text, V, end text é uma certa tensão de saída constante, como v, equals, 3, start text, V, end text.
Você frequentemente observa o nome da variável e associado com tensão, derivado do termo "força eletromotriz" ou fem. Esse termo é, às vezes, usado quando falamos sobre tensão de uma fonte (bateria ou gerador).
Os dois símbolos comuns para fontes de tensão constante:
O símbolo à esquerda é usado para uma bateria. A linha horizontal maior no símbolo da bateria representa o terminal positivo da bateria e a linha horizontal menor representa o terminal negativo. O símbolo circular representa alguma outra fonte de tensão, geralmente uma fonte de alimentação. É uma boa prática desenhar os sinais plus e minus dentro do círculo.

Fonte de tensão variável

Uma fonte de tensão variável gera uma tensão conhecida como função temporal, independente da corrente absorvida pelos componentes conectados aos seus terminais, como mostrado neste gráfico t, e, n, s, a, with, \tilde, on top, o versus t, e, m, p, o:
A equação para uma fonte de tensão variável é,
v, equals, v, left parenthesis, t, right parenthesis
v, left parenthesis, t, right parenthesis pode ser uma onda senoidal ou qualquer outra tensão variável no tempo. Por exemplo, um único degrau de tensão ou uma onda quadrada que se repete.
O símbolo para uma fonte de tensão variável:
O rabisco dentro do círculo sugere que este símbolo em particular representa um gerador de onda senoidal. Você irá cruzar com variações deste símbolo para formas de onda diferentes.
Estas abstrações matemáticas ideais de fontes de tensão podem produzir arbitrariamente uma enorme corrente de saída se os componentes conectados tiverem essa demanda. Isso não acontece na vida real, é claro. Um lugar onde correntes gigantescas aparecem é quando você simula um circuito. O computador não se importa com uma corrente de um zilhão de amperes, mas, provavelmente, não é o que você pretendia.

Fonte de corrente constante

Uma fonte ideal de corrente constante possui uma corrente de saída fixa, independente da tensão conectada aos seus terminais, como mostrado neste gráfico c, o, r, r, e, n, t, e versus t, e, n, s, a, with, \tilde, on top, o:
A equação para uma fonte de corrente constante é,
i, equals, start text, I, end text
onde start text, I, end text representa uma corrente de saída constante, como, por exemplo, i, equals, 2, start text, m, A, end text.
O símbolo para uma fonte de corrente constante:
A seta indica a direção do fluxo de corrente positiva.
A tensão nos terminais de uma fonte ideal de corrente se altera da maneira que for necessária para gerar uma corrente de saída constante. Mesmo se essa tensão for gigantesca. Quando construímos fontes reais de corrente, claro, a faixa de operação é significativamente restrita em comparação com a abstração da fonte ideal de corrente.

Resistor

A tensão em um resistor é diretamente proporcional à corrente que flui através dele.
v, equals, start text, R, end text, i, start text, space, L, e, i, space, d, e, space, O, h, m, end text
Esta relação é conhecida como Lei de Ohm. Você vai usar muito mesmo esta equação em seu trabalho com circuitos.
start text, R, end text é uma constante de proporcionalidade, representando a resistência. A resistência possui a unidade de ohms, denotada pelo símbolo grego maiúsculo Omega, \Omega.
O gráfico i-v para um resistor é mostrado abaixo. A equação plotada é i, equals, v, slash, start text, R, end text, então a inclinação da reta é 1, slash, start text, R, end text.
Os símbolos para um resistor:
Nos EUA e Japão, o símbolo de resistência é um zig-zag. No Reino Unido, Europa e outras partes do mundo, a resistência geralmente é desenhada como uma caixa retangular.
A Lei de Ohm pode ser escrita de várias maneiras, todas elas úteis,
v, equals, i, start text, R, end text, i, equals, start fraction, v, divided by, start text, R, end text, end fraction, start text, R, end text, equals, start fraction, v, divided by, i, end fraction
Vale a pena relembrar a Lei de Ohm.

Potência em um resistor

Potência é dissipada por um resistor quando corrente flui através dele.
Energia dos elétrons que fluem se converte em uma grande quantidade de calor, conforme os elétrons colidem com os átomos do material do resistor. A potência dissipada pode ser expressa de diferentes maneiras, usando a Lei de Ohm. Todas elas são equivalentes,
p, equals, v, i
p, equals, left parenthesis, start text, i, end text, start text, R, end text, right parenthesis, i, equals, i, squared, start text, R, end text
p, equals, v, left parenthesis, start fraction, v, divided by, start text, R, end text, end fraction, right parenthesis, equals, start fraction, v, squared, divided by, start text, R, end text, end fraction
As duas últimas expressões revelam que a potência em um resistor aumenta (ou diminui) proporcionalmente ao quadrado da tensão ou corrente.
  • Aumente tanto a tensão quanto a corrente por um fator de 2 e a potência consumida aumentará por um fator de 4.
  • Reduza tanto a tensão quanto a corrente pela metade e você reduzirá a potência por
  • Aaron encontra uma maneira de cortar pela metade a tensão em um resistor. Quando Beth olha para o novo projeto de Aaron, ela descobre como reduzir a corrente no resistor por um fator de dois.

Capacitor

A equação básica descrevendo um capacitor relaciona a carga no capacitor com a tensão sobre o capacitor.
start text, Q, end text, equals, start text, C, end text, start text, V, end text
A constante de proporcionalidade start text, C, end text é a capacitância. A capacitância possui como unidade os farads, simbolizado pela letra maiúscula start text, F, end text. A unidade de capacitância é o farad e, a partir da equação acima, vemos que, 1, start text, f, a, r, a, d, end text, equals, 1, start text, c, o, u, l, o, m, b, end text, slash, start text, v, o, l, t, end text
Se a carga pode se mover, temos um termo para isso; carga em movimento é chamada de corrente. Corrente é a taxa da mudança de carga ao longo do tempo,
i, equals, start fraction, d, q, divided by, d, t, end fraction
Usando essa ideia, vamos aplicar a derivada em ambos os lados de start text, Q, end text, equals, start text, C, end text, start text, V, end text com respeito ao tempo e ver o que obtemos,
start fraction, d, q, divided by, d, t, end fraction, equals, start text, C, end text, start fraction, d, v, divided by, d, t, end fraction
e terminamos com uma equação dizendo que a corrente num capacitor é diretamente proporcional a taxa temporal de variação da tensão através do capacitor,
i, equals, start text, C, end text, start fraction, d, v, divided by, d, t, end fraction
Esta equação do capacitor capta a relação i-v para capacitores. Ela também nos diz que os circuitos elétricos podem ser afetados pelo tempo.
Os símbolos para um capacitor:
A versão com a linha curva é usada para capacitores fabricados de uma forma que requer um terminal para ter uma tensão positiva em relação a outro terminal. A linha curva indica o terminal que precisa ser mantido na tensão mais negativa.
Podemos inverter a equação de capacitor ao contrário para resolver v em termos de i, integrando ambos os lados, resultando na forma integral da equação do capacitor,
v, equals, start fraction, 1, divided by, start text, C, end text, end fraction, integral, start subscript, minus, infinity, end subscript, start superscript, T, end superscript, i, d, t
O limite inferior minus, infinity na integral sugere que a tensão do capacitor ao longo do tempo T depende não somente da corrente no capacitor neste exato momento, mas de todo o histórico da corrente. Isso num tempo muito anterior, então normalmente escrevemos essa integral a partir de alguma tensão conhecida, v, start subscript, 0, end subscript, em algum momento conhecido, como t, equals, 0, e depois acompanhamos as mudanças a partir daí.
v, equals, start fraction, 1, divided by, start text, C, end text, end fraction, integral, start subscript, 0, end subscript, start superscript, T, end superscript, i, d, t, plus, v, start subscript, 0, end subscript

Potência e energia em um capacitor

A potência instantânea, em watts, associada a um capacitor é,
p, equals, v, i
p, equals, v, start text, C, end text, start fraction, d, v, divided by, d, t, end fraction
A energia left parenthesis, U, right parenthesis, armazenada em um capacitor, é a potência integrada ao longo do tempo,
U, equals, integral, p, d, t, equals, integral, v, start text, C, end text, start fraction, d, v, divided by, d, t, end fraction, d, t, equals, start text, C, end text, integral, v, d, v
Se assumirmos que a tensão no capacitor era 0, start text, V, end text no início da integração, então a integral é avaliada como:
U, equals, start fraction, 1, divided by, 2, end fraction, start text, C, end text, v, squared
Ao contrário de um resistor, no qual a energia é perdida sob a forma de calor, a energia num capacitor ideal não se dissipa. Em vez disso, a energia no capacitor, sob a forma de carga armazenada, é recuperada quando a carga flui para fora do capacitor.

Indutor

A tensão em um indutor é diretamente proporcional à taxa temporal de variação da corrente através do indutor,
v, equals, start text, L, end text, start fraction, d, i, divided by, d, t, end fraction
Esta propriedade decorre da capacidade do indutor de armazenar energia num campo magnético circundante. A energia magnética armazenada pode retornar ao circuito ao gerar uma corrente elétrica.
A constante de proporcionalidade start text, L, end text é a chamada indutância. A unidade de indutância é o henry, denotado pela letra maiúscula H.
A razão pela qual que essa propriedade de indutância surge em bobinas de fio é um tema complexo, que envolve a relação íntima entre eletricidade e magnetismo, que está além do escopo deste artigo. Por hora, por favor, apenas confie que a tensão através de um indutor é proporcional à taxa de variação da corrente.
O símbolo de um indutor:
É parecido com um fio enrolado em uma bobina, uma vez que é a maneira usual de se fazer um indutor.
Semelhante à equação do capacitor, podemos escrever a equação do indutor na forma integral para obter i em termos de v. Observe a semelhança entre as equações do capacitor e do indutor.
i, equals, start fraction, 1, divided by, start text, L, end text, end fraction, integral, start subscript, minus, infinity, end subscript, start superscript, T, end superscript, v, d, t
start color #888d93, v, equals, start fraction, 1, divided by, start text, C, end text, end fraction, integral, start subscript, minus, infinity, end subscript, start superscript, T, end superscript, i, d, t, end color #888d93
O limite inferior minus, infinity na integral significa que a corrente na bobina no tempo T depende de todo o histórico da tensão no indutor. Normalmente, escrevemos esta integral a partir de alguma corrente conhecida, i, start subscript, 0, end subscript, em algum momento conhecido, como t, equals, 0, e depois acompanhamos as mudanças a partir daí.
i, equals, start fraction, 1, divided by, start text, L, end text, end fraction, integral, start subscript, 0, end subscript, start superscript, T, end superscript, v, d, t, plus, i, start subscript, 0, end subscript

Potência e energia em um indutor

A potência instantânea, em watts, associada ao indutor é
p, equals, i, v
p, equals, i, start text, L, end text, start fraction, d, i, divided by, d, t, end fraction
A energia left parenthesis, U, right parenthesis armazenada no campo magnético de um indutor é potência integrada ao longo do tempo,
U, equals, integral, p, d, t, equals, integral, i, start text, L, end text, start fraction, d, i, divided by, d, t, end fraction, d, t, equals, start text, L, end text, integral, i, d, i
U, equals, start fraction, 1, divided by, 2, end fraction, start text, L, end text, i, squared
Ao contrário de um resistor, no qual a energia é perdida sob a forma de calor, a energia de um indutor ideal não se dissipa. Em vez disso, a energia armazenada no campo magnético do indutor pode ser totalmente recuperada quando a energia no campo magnético é convertida de volta numa corrente elétrica no fio.

Resumo das equações dos componentes ideais

Aqui estão as três equações importantes de componentes de circuitos i-v,
v, equals, i, start text, R, end text Lei de Ohm
i, equals, start text, C, end text, start fraction, d, v, divided by, d, t, end fraction equação do capacitor
v, equals, start text, L, end text, start fraction, d, i, divided by, d, t, end fraction equação do indutor
Estas três expressões são as ferramentas necessárias para a análise do circuito.
Além disso, também desenvolvemos essas expressões para potência e energia.
A potência em um resistor é
p, equals, i, v oui, squared, rou v, squared, slash, r
A energia num capacitor é start fraction, 1, divided by, 2, end fraction, start text, C, end text, v, squared
A energia num indutor é start fraction, 1, divided by, 2, end fraction, start text, L, end text, i, squared
O próximo artigo descreve como os componentes físicos do mundo real se aproximam do ideal matemático.

Quer participar da conversa?

  • Avatar blobby green style do usuário Luiz Pires
    caros: maravilhosa inciativa, que conheci hoje. sou engenheiro químico desde 1986, mestre em eng. química desde 1981. sou adepto do saber. recordando as aulas de eletricidade na faculdade. muito didático o texto, quase perfeito. vi uma falha que peço aos senhores que corrijam. na seção sobre indutores está escrito "Por hora, por favor". o correto é "Por ora", já que a palavra "ora" ali é um sinônimo de "agora". Tirando este detalhezinho, impecável. pretendo visualizar outros tópicos e futuramente ajudar vocês com doações. grande abraço! Luiz Pires
    (10 votos)
    Avatar Default Khan Academy avatar do usuário
Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.