Conteúdo principal
Engenharia elétrica
Curso: Engenharia elétrica > Unidade 2
Lição 3: Análise de circuito DC- Visão geral de análise de circuitos
- Lei das correntes de Kirchhoff
- Lei de Kirchhoff da tensão
- Leis de Kirchhoff
- Rotulação de tensões
- Aplicação das leis fundamentais (análise)
- Aplicação das leis fundamentais (solução)
- Aplicação das leis fundamentais
- Método das Tensões de Nó (passos 1-4)
- Método das Tensões de Nó (passo 5)
- Método das Tensões de Nó
- Método das Correntes de Malha (passos de 1 a 3)
- Método das Correntes de Malha (passo 4)
- Método das Correntes de Malha
- Método das Correntes de Malha
- Número de equações necessárias
- Linearidade
- Superposição
© 2023 Khan AcademyTermos de usoPolítica de privacidadeAviso de cookies
Método das Correntes de Malha (passos de 1 a 3)
Resolvemos um circuito escrevendo a Lei de Kirchhoff das Tensões em termos das "correntes de malha simples"Este vídeo cobre os primeiros três passos de um total de quatro. Versão original criada por Willy McAllister.
Quer participar da conversa?
Nenhuma postagem por enquanto.
Transcrição de vídeo
RKA19 - Aqui vamos ver
o método da malha para corrente. Vamos seguir quatro passos. O primeiro passo é identificar as malhas. O segundo passo será resolver as mais fáceis. O terceiro passo será escrever as equações de Kirchhoff, seguindo a lei da voltagem de Kirchhoff. E, finalmente, o quarto passo,
que vamos fazer no próximo vídeo, será o de solucionar. Então, o que é que uma malha? Uma malha
é quando você percorre o circuito e chega no mesmo ponto
de onde você partiu. Vamos identificar.
Aqui, você tem uma malha. Vamos chamar esta malha
contendo a corrente de i₁. Aqui, você tem outra malha. Vamos chamar esta malha
contendo a corrente de i₂. E, aqui, você tem outra malha. Vamos chamar esta malha
contendo a corrente i₃. Vamos colocar todas as três
no mesmo sentido. Quando a gente identifica as malhas, é verificar que você partiu de um ponto e chegou no mesmo ponto.
Pela lei de voltagem de Kirchhoff, esta voltagem aqui,
se você colocar como zero, você vai ter somas e subtrações
de voltagens e vai voltar até zero ao percorrer
uma malha, ao percorrer a malha 1,
ao percorrer a malha 2 ao percorrer a malha 3. Agora, vamos dar nome
aos componentes do circuito. Aqui, você tem uma fonte de tensão “V”. Vamos chamar este aqui de R₁. E vamos chamar este de R₂, vamos chamar este de R₃
e este aqui este de R₄. E, esta fonte de corrente,
vamos chamar de “I”. Então, identificamos as malhas. Nós demos nomes às fontes,
tanto de corrente quanto de voltagem, e dos resistores e, agora, vamos
resolver as mais fáceis. A mais fácil é i₃.
Por que i₃ é mais fácil? Porque só esta corrente
passa por “I”. Então, significa que i₃ é igual... Veja que o sentido de “I” é para cima,
e i₃ está percorrendo para baixo. Portanto, i₃ vai ser -I. Agora, para escrever as leis
da voltagem de Kirchoff, nós vamos verificar que,
partindo deste ponto, nós temos um crescimento
de voltagem “V”, vamos ter uma corrente passando aqui,
que vai ser i₁, que vai passar neste resistor R₁. Agora, neste resistor R₂,
nós vamos ter duas correntes. Vamos ter i₁, que vai passar
do polo positivo ao polo negativo, ou seja, você vai ter uma queda
de i₁ vezes R₂. Mas, ao mesmo tempo,
você tem uma superposição de i₂. Portanto, qual vai ser
a corrente “I” de R₂? A corrente “I” de R₂ vai ser
i₁ menos i₂. Então, vamos fazer um passo 3
e colocar as equações de Kirchoff. Nós temos, aqui,
uma subida de voltagem nesta malha. Vamos ver essa malha 1.
Nós temos uma subida de voltagem “V”. Depois, temos uma queda em R₁, que vai ser i₁ vezes R₁, ou seja, R₁ vezes i₁. Aqui, a gente vai ter uma queda
de R₂ vezes iR₂, ou seja, uma queda de R₂, onde iR₂ é i₁ menos i₂. E, agora, voltamos para o mesmo ponto. Portanto, chegamos. Esta aqui
tem que ser zero, a soma aqui. Qual é a próxima equação
que nós podemos escrever? Aqui, nós temos um R₂. Ele está passando neste sentido. Ele está aumentando a voltagem. Ele está passando do negativo
para o positivo, portanto é +R₂, vezes a diferença destas duas correntes, ou seja, i₁ menos i₂, i₁ - i₂. Aqui, em R₃, nós vamos ter apenas i₂, portanto vai ser
menos R₃ vezes i₂, -R₃ vezes i₂. E, finalmente, em R₄,
nós vamos ter duas correntes. Colocando a queda em R₄,
nós vamos ter -R₄ vezes i₂ menos i₃. Isto aqui vai
ser igual a zero. Portanto, identificamos as malhas, resolvemos as mais fáceis e escrevemos equações
pela lei da voltagem de Kirchoff. No próximo vídeo,
vamos solucionar este exemplo.