Conteúdo principal
Biblioteca de Física
Curso: Biblioteca de Física > Unidade 10
Lição 2: Calor específico e transferência de calor- Calor específico e calor latente de fusão e de vaporização
- Condução, convecção e radiação térmicas
- Condução térmica
- Condutividade térmica do metal e da madeira
- A lógica por trás da fórmula da condutividade térmica
- O que é condutividade térmica?
© 2023 Khan AcademyTermos de usoPolítica de privacidadeAviso de cookies
A lógica por trás da fórmula da condutividade térmica
A lógica por trás da fórmula da condutividade térmica.
Quer participar da conversa?
- Este k tem haver com a densidade do material?(2 votos)
Transcrição de vídeo
RKA2G Temos aqui um sistema bastante interessante,
em que temos dois compartimentos. No compartimento da esquerda temos
um gás que está a uma temperatura "Ta". No lado direito, eu tenho um gás
que está na temperatura "Tb". E eles estão separados por uma parede de largura,
ou de espessura, "d". E a área, a superfície de contato do gás com a parede é indicada por esta área "A", que você vê aqui. Neste desenho estamos assumindo
que esta parede é o suficiente para manter os dois compartimentos
completamente separados. O que vamos estudar aqui, que é interessante,
é o fato de que a temperatura à esquerda é mais alta do que a temperatura no ambiente à direita e, portanto, teremos transferência de energia térmica
da esquerda para a direita. Chamamos essa energia transferida de calor
e vamos indicá-la pela letra "Q". E eu estou um pouco curioso para saber
como esta razão Q/t, ou seja, taxa de transferência de calor em relação ao tempo, se comporta nesta situação, com estas variáveis. Vamos começar pensando, por exemplo, na área.
O que acontece se a área aumenta? O que vamos ter para Q/t? O que vai acontecer é que a taxa Q/t
vai, também, aumentar, porque nós temos maior área para transferir calor, temos mais superfície para que as moléculas de gás que estão mais quentes, mais agitadas, possam se chocar contra a parede e levar energia
para o outro compartimento, aquecendo as moléculas do gás azul. Evidentemente, se diminuirmos o tamanho da área, a razão Q/t também vai diminuir.
É um pouco, até mesmo, do senso comum. Agora vamos pensar um pouco sobre a largura,
ou seja, a espessura da parede. Se eu aumentar a espessura "d", o que vai acontecer
com a taxa de transferência de calor? Sendo a parede mais espessa, mais grossa, nós vamos ter mais matéria e as moléculas
do gás vermelho, que estão em uma temperatura maior, têm que movimentar um maior número de moléculas aqui na parede, por causa da sua grossura, para depois, finalmente, ser essa energia transferida
para as moléculas do gás azul. Portanto, aumentando a espessura "d" da parede, a razão Q/t vai diminuir, ou seja,
quanto mais grossa a parede, menos calor por unidade de tempo
é transferido nesta situação. Evidentemente, se a parede fica mais fina,
se o "d" fica menor, então o Q/t vai ficar maior. Ou seja, a espessura da parede
é inversamente proporcional à variação da temperatura
e à transferência de energia térmica. Vamos pensar agora na diferença
das temperaturas dos dois gases. Se a temperatura Ta menos Tb,
que é a diferença entre elas, aumentar, o que vai acontecer com Q/t? Isso é até um pouco intuitivo. Se você tem aqui
o gás cor-de-rosa muito quente, superquente, e o gás azul bem mais frio, é claro que vai haver uma maior e mais intensa transferência de energia térmica, de calor, do gás quente para o gás frio.
E, portanto, a taxa Q/t vai ser maior também. E, evidente, se a diferença entre as temperaturas
for menor, a taxa Q/t também vai ser menor. A transferência de calor vai ser menos intensa
por unidade de tempo, chegando ao extremo de que, se Ta for igual a Tb, não há diferença de temperatura,
então não haverá transferência de calor, transferência de energia térmica. Então, é razoável considerar
que a diferença entre as temperaturas vai ser proporcional à taxa
de transferência de calor, que é o Q/t. Então, como podemos juntar todas essas ideias
até mesmo intuitivas em uma única, digamos, fórmula? Queremos uma fórmula que descreva como a quantidade de energia transmitida
em relação ao tempo se relaciona com todas estas variáveis. Então, podemos concluir que a taxa
de transferência de calor Q/t vai ser proporcional (igual a um K vezes alguma coisa). E o que, mesmo, é proporcional a ela? Começamos pela área. A área
é diretamente proporcional à taxa de transferência de calor. Quanto maior a área de contato,
maior a taxa de transferência de calor. Também vai ser diretamente proporcional
à diferença entre as temperaturas Ta e Tb, então, vamos multiplicar aqui. E vai ser inversamente proporcional
à espessura, à largura da parede, então, vou dividir aqui pelo "d". Outra coisa que precisamos pensar a respeito é:
e esta constante de proporcionalidade? O valor de K, então, vai ser diferente
para cada material. Por exemplo, se esta parede foi feita de madeira ou de metal,
a condutividade vai ser diferente? Sim, a verdade é que isso acontece, ou seja, K realmente é dependente do material
com o qual é feita a parede que separa os dois ambientes de gás. Você pode medir este número, diferentes materiais
vão ter diferentes condutibilidades térmicas. Conseguimos aqui, então, uma fórmula que nos permite pensar sobre a taxa de calor transferida através de uma parede sólida a partir simplesmente do que é senso comum,
do que é bastante intuitivo. Ou seja, a quantidade de calor transferida por tempo. Essa taxa vai ser diretamente proporcional
à área da parede que separa os ambientes e também à diferença entre as temperaturas
de um ambiente para outro, e inversamente proporcional à largura, à grossura,
à espessura da parede que separa os ambientes. Então, por exemplo para isolar alguma coisa, basta você diminuir a área da parede
e aumentar a espessura dela. Assim, você vai diminuir bastante a taxa
de transferência de calor de um ambiente para outro. E é isso o que define esses materiais dos quais
são feitos recipientes térmicos. Esses materiais têm uma condutibilidade térmica
muito pequena, que dificulta, portanto, a transferência de calor
do ambiente interno para o externo e vice-versa, mantendo, assim, o alimento mais gelado
ou mais quente, conforme se deseje. Até o próximo vídeo!