If you're seeing this message, it means we're having trouble loading external resources on our website.

Se você está atrás de um filtro da Web, certifique-se que os domínios *.kastatic.org e *.kasandbox.org estão desbloqueados.

Conteúdo principal

Determinante 4x4 mais simples

Cálculo de um determinante 4x4, colocando primeiro na forma triangular superior. Versão original criada por Sal Khan.

Quer participar da conversa?

Você entende inglês? Clique aqui para ver mais debates na versão em inglês do site da Khan Academy.

Transcrição de vídeo

RKA4JL - Olá! Nós temos aqui uma matriz A de quatro linhas por quatro colunas e vamos ver se nós podemos calcular o determinante dessa matriz A, o determinante de A. Mas antes de a gente fazer da maneira como nós estávamos fazendo nos vídeos passados, e olha que aqui você não tem nenhuma linha e nenhuma coluna muito fácil com zero, o que facilitaria os cálculos, a gente pode até pegar essa coluna aqui para poder criar submatrizes, mas aí nós teríamos que calcular o determinante de quatro matrizes 3 por 3 e depois ainda calcular três determinantes de matrizes 2 por 2. Bom, isso seria um processo bem complicado, bem demorado. Vamos ver se a gente consegue usar algumas técnicas que foram estudadas nos vídeos anteriores para poder simplificar um pouco esse processo. Uma ideia de operação entre as linhas da matriz seria trocar a linha j por uma combinação linear da linha j com a linha i, por exemplo. De que maneira? Então nós vamos trocar a linha j por j menos um múltiplo, vezes a linha i. E se nós fizermos essa troca, saberemos que isso não vai alterar o valor do determinante de A. Então nós podemos fazer essa operação com linhas da matriz e isso não vai afetar, não vai alterar o valor do determinante da matriz. A outra ideia que vimos é que podemos calcular o determinante de matrizes triangulares superiores. E o que vem a ser uma matriz triangular superior? Vamos lembrar: essencialmente, é uma matriz em que todos os termos que estão abaixo da diagonal principal... E aí deixe-me fazer aqui essa diagonal principal. Vamos fazer termos genéricos aqui, tá? Esses termos não são iguais a zero, mas todos os termos que estiverem aqui, abaixo da diagonal principal, eles serão iguais a zero. Então aqui vai ser tudo zero, aqui tudo zero, tudo zero aqui dentro dessa matriz, nessa parte aqui de baixo que eu estou aqui destacando de verde. E tudo que estiver acima da diagonal principal, todos esses termos aqui, eles não necessariamente têm que ser iguais a zero, mas os que estão abaixo da diagonal principal, sim. Todos esses têm que ser iguais a zero. Eu não mencionei isso no vídeo, mas existe uma matriz que se chama matriz triangular inferior e você já vai adivinhar o que é isso. Uma matriz triangular inferior é uma matriz em que todos os termos que estão acima da diagonal principal, (e aqui eu estou fazendo a diagonal principal com termos que são diferentes de zero), na matriz triangular inferior, todos os termos que estão acima da diagonal principal são iguais a zero. Então todos esses termos aqui são iguais a zero e todos os termos que estão abaixo da diagonal principal seriam diferentes de zero, não são iguais a zero. Nós vimos que para calcular o determinante de uma matriz triangular superior, nós precisávamos apenas calcular o produto dos termos que estão na diagonal principal. Eu não vou provar isso para este vídeo, mas nós podemos usar o mesmo argumento para calcular o determinante de uma matriz triangular inferior. Basta multiplicar os termos que estão na diagonal principal. Então considerando que basta multiplicarmos os termos da diagonal principal e que também podemos fazer operações entre as linhas, quem sabe uma maneira de calcular o determinante da matriz A, uma maneira mais simples, não seja transformá-la em uma matriz triangular superior, e assim nós vamos apenas multiplicar os termos da diagonal principal. Então vamos fazer isso. Vamos calcular o determinante de A. Vou escrever aqui 1, 2, 2, 1; 1, 2, 4, 2; 2, 7, 5, 2; -1, 4, -6, 3. Agora nós vamos começar o processo de triangulação. Então a primeira linha eu vou manter, 1, 2, 2, 1, a segunda linha vou substituir pelo resultado da segunda linha menos a primeira linha, então 1 menos 1, zero, 2 menos 2, zero, 4 menos 2, 2, 2 menos 1, 1. A terceira linha eu vou substituir pelo resultado da terceira linha menos 2 vezes a primeira linha, então 2 menos 2 vezes 1, zero, 7 menos 2 vezes 2, 3, 5 menos 2 vezes 2, 1, 2 menos 2 vezes 1, zero. E a última linha vou substituir pelo resultado da soma da última linha com a primeira linha: -1 mais 1, zero, 4 mais 2, 6, -6 mais 2, -4, 3 mais 1, 4. Bom, e agora estou vendo que eu tenho dois zeros aqui, então eu tenho um zero na minha diagonal principal. Eu vou fazer uma troca de linhas. Eu posso fazer uma troca de linhas? Posso, sim. Como que vai ficar, então? A primeira linha vai se manter, então vai ficar 1, 2, 2, 1, a última linha também vou manter, zero, 6, -4, 4 e vou trocar a segunda linha com a terceira linha. Então a terceira linha vai vir para cá e fica assim: zero, 3, 1, zero e a segunda linha vai para o lugar da terceira, ficando zero, zero, 2, 1. Bom, eu posso trocar linhas de lugar? Posso, mas é importante lembrar o seguinte: quando eu troco duas linhas de lugar, o sinal do determinante da matriz em relação ao sinal do determinante da matriz original também troca, então eu posso fazer essa troca desde que eu também troque o sinal do determinante. Isso foi uma coisa que nós vimos em um dos primeiros vídeos sobre esse assunto de manipulação de determinantes. E para transformar essa matriz em uma matriz triangular superior, nós vamos precisar zerar aqui também esse termo. Então vai ficar assim: todo o restante igual, 1, 2, 2, 1; zero, 3, 1, zero; zero, zero, 2, 1 e a última linha eu vou substituir pelo resultado da seguinte operação: última linha menos 2 vezes a segunda linha, zero menos 2 vezes zero, zero, 6 menos 2 vezes 3, zero, -4 menos 2 vezes 1, -6, 4 menos 2 vezes zero, 4. Eu não posso esquecer também do sinal, que era negativo, não é? Aqui vai se manter também. Agora já está quase terminando o processo de triangulação, mas eu ainda preciso zerar esse termo aqui. Então a primeira, segunda e terceira linhas vão ficar como estavam, então continua 1, 2, 2, 1; zero, 3, 1, zero; zero, zero, 2, 1. Estou calculando o determinante, não posso esquecer que o sinal aqui é negativo porque nós fizemos uma troca de linhas anteriormente e a última linha vou substituir pelo resultado da operação dela mais 3 vezes a penúltima linha. Então vai ficar assim: zero mais 3 vezes zero, zero, zero mais 3 vezes zero, zero, -6 mais 3 vezes 2, zero, 4 mais 3 vezes 1, 7. E agora que eu tenho uma matriz triangular superior, o determinante dela vai ser o produto desses termos da diagonal principal. Então o determinante aqui vai ser, não posso esquecer do sinal negativo, menos o produto desses termos que estão na diagonal principal: 1 vez 3 vezes 2 vezes 7. 1 vez 3, 3, 3 vezes 2, 6, 6 vezes 7, 42. -42, portanto, é o determinante dessa matriz aqui. Este é um método rápido e tende a ser computacionalmente mais eficiente utilizar esse processo de transformar a matriz em uma matriz triangular superior e depois calcular o determinante dessa matriz multiplicando apenas os termos da diagonal principal, que no nosso caso foi -42.